1
|
Gałczyńska-Rusin M, Szyszka-Sommerfeld L, Idzior-Haufa M, Pobudek-Radzikowska M, Woźniak K, Czajka-Jakubowska A. Oral parafunctional behaviors, TMD pain, and headaches among patients underwent orthodontic therapy-an observational study. Front Neurol 2025; 16:1548138. [PMID: 40260142 PMCID: PMC12010069 DOI: 10.3389/fneur.2025.1548138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Few studies have evaluated oral behaviors in patients undergoing orthodontic treatment. While occlusal and non-occlusal parafunctions may significantly contribute to TMD symptoms, their frequency in orthodontic patients remains unclear. This study aimed to assess the occurrence of oral parafunctions, TMD pain, and headaches in this population. Materials and methods The study included patients undergoing orthodontic treatment with fixed appliances. The Fonseca Anamnestic Index, DC/TMD Axis I, and Oral Behavior Checklist (OBC) questionnaires were used to assess the occurrence of TMD pain and oral parafunctions. Results The study included 152 patients. 59.2% of the study participants were women, the mean age was 20.01 (SD 6.89). The painful form of TMD was found in 23.7% of the study participants, with headaches in 26.4% (with TMD-attributed headaches in 13.2%). The mean score on the OBC questionnaire was 18.96 (SD 8.89) and 25% of patients had high-risk grade of oral behaviors. Conclusion Patients experiencing myalgia, arthralgia, and headaches had notably higher OBC scores. Patients undergoing orthodontic treatment should be screened for oral parafunctions and TMD pain.
Collapse
Affiliation(s)
- Małgorzata Gałczyńska-Rusin
- Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | - Liliana Szyszka-Sommerfeld
- Department of Maxillofacial Orthopedics and Orthodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Laboratory for Propaedeutics of Orthodontics and Facial Congenital Defects, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Idzior-Haufa
- Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Krzysztof Woźniak
- Department of Maxillofacial Orthopedics and Orthodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Agata Czajka-Jakubowska
- Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Schwedt TJ, Lipton RB, Goadsby PJ, Chiang CC, Klein BC, Hussar C, Liu C, Yu SY, Finnegan M, Trugman JM. Characterizing Prodrome (Premonitory Phase) in Migraine: Results From the PRODROME Trial Screening Period. Neurol Clin Pract 2025; 15:e200359. [PMID: 39399572 PMCID: PMC11464217 DOI: 10.1212/cpj.0000000000200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 10/15/2024]
Abstract
Background and Objective Limited data are available describing the frequency, severity, and consistency of prodromal symptoms followed by headache. This analysis of the PRODROME trial screening period characterized prodromal symptoms in people with migraine, including the most common symptoms and their severity, and the frequency and consistency with which prodromal symptoms were followed by headache. Methods PRODROME was a multicenter, randomized, double-blind, placebo-controlled, crossover trial conducted in the United States that enrolled adults with 2-8 migraine attacks per month who stated they could identify prodromal symptoms that were reliably followed by a headache. The trial included a 60-day screening period designed to test the predictive validity of "qualifying prodrome events" before the onset of headache. Participants used an eDiary to report qualifying prodrome events, defined as prodromal symptoms whereby the participant was confident a headache would follow within 1-6 hours. This analysis evaluated common prodromal symptoms and their severity, time from prodrome onset to headache onset, and the percentage of participants who identified prodromal symptoms that were followed by a headache ≥75% of the time over the 60-day screening period. Results A total of 920 participants entered eDiary data, with a mean of 5.2 qualifying prodrome events during the 60-day screening period. A total of 4,802 qualifying prodrome events were recorded. The most common prodromal symptoms identified were sensitivity to light (57.2%; 2,748/4,802), fatigue (50.1%; 2,408/4,802), neck pain (41.9%; 2,013/4,802), sensitivity to sound (33.9%; 1,630/4,802), either difficulty thinking or concentrating (30.0%; 1,442/4,802), and dizziness (27.8%; 1,333/4,802). Of all qualifying prodrome events reported, 81.5% (3,913/4,802) were followed by headache of any intensity within 1-6 hours. For each participant, a mean of 84.4% of their qualifying prodrome events were followed by a headache within 1-6 hours, with 76.9% of participants identifying qualifying prodrome events that were followed by headache within 1-6 hours ≥75% of the time. Discussion Participants were able to identify migraine attacks in which prodromal symptoms were reliably followed by a headache within 1-6 hours. These findings suggest the potential for initiating treatment during the prodrome to prevent headache. Trial Registration Information ClinicalTrials.gov NCT04492020. Submitted: July 27, 2020; First patient enrolled: August 21, 2020. clinicaltrials.gov/study/NCT04492020.
Collapse
Affiliation(s)
- Todd J Schwedt
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Richard B Lipton
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Peter J Goadsby
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Chia-Chun Chiang
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Brad C Klein
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Cory Hussar
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Chengcheng Liu
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Sung Yun Yu
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Michelle Finnegan
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Joel M Trugman
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| |
Collapse
|
3
|
Neverdahl JP, Uglem M, Matre D, Nilsen KB, Hagen K, Gravdahl GB, Sand T, Omland PM. Endogenous pain modulation after sleep restriction in migraine: a blinded crossover study. J Headache Pain 2024; 25:166. [PMID: 39363172 PMCID: PMC11448287 DOI: 10.1186/s10194-024-01879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Patients with migraine are vulnerable to insufficient sleep, but the impact of sleep restriction is largely unknown. In addition, the importance of sleep may be different in patients with migraine who mostly have attack onsets during sleep, so called sleep-related migraine, compared to patients with non-sleep-related migraine. In this study we investigate the effect of sleep restriction on endogenous pain modulation in patients with migraine and healthy controls. We also compared the effect of sleep restriction in sleep-related and in non-sleep-related migraine. METHODS Measurements were conducted in 39 patients with migraine between attacks and 31 controls, once after habitual sleep and once after two consecutive nights of partial sleep restriction. There were 29 and 10 patients with non-sleep-related and sleep-related migraine respectively. Test stimulus was 2-min tonic noxious heat to the left volar forearm. Temporal summation was calculated as the regression coefficient for rated pain in the late part of this 2-min stimulation. Conditioning stimulus was right hand-immersion in 7 °C water. Conditioned pain modulation was defined as the difference in rated pain with and without the conditioning stimulus and was calculated for temporal summation and mean rated pain for the test stimulus. The effect of sleep restriction on temporal summation and conditioned pain modulation was compared in migraine subjects and controls using two-level models with recordings nested in subjects. RESULTS Conditioned pain modulation for temporal summation of heat pain tended to be reduced after sleep restriction in patients with migraine compared to controls (p = 0.060) and, in an exploratory analysis, was reduced more after sleep restriction in sleep-related than in non-sleep-related migraine (p = 0.017). No other differences between groups after sleep restriction were found for temporal summation or conditioned pain modulation. CONCLUSION Patients with migraine may have a subtly altered endogenous pain modulation system. Sleep restriction may have an increased pronociceptive effect on this system, suggesting a mechanism for vulnerability to insufficient sleep in migraine. This effect seems to be larger in sleep-related migraine than in non-sleep-related migraine.
Collapse
Affiliation(s)
- Jan Petter Neverdahl
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway.
- Section for Clinical Psychosis Research, Department of Research and Innovation, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Martin Uglem
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Dagfinn Matre
- National Institute of Occupational Health, Oslo, Norway
| | - Kristian Bernhard Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Knut Hagen
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Clinical Research Unit, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gøril Bruvik Gravdahl
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Sciences, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
- NorHEAD - Norwegian Centre for Headache Research, NTNU, Trondheim, Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
4
|
Sebastianelli G, Atalar AÇ, Cetta I, Farham F, Fitzek M, Karatas-Kursun H, Kholodova M, Kukumägi KH, Montisano DA, Onan D, Pantovic A, Skarlet J, Sotnikov D, Caronna E, Pozo-Rosich P. Insights from triggers and prodromal symptoms on how migraine attacks start: The threshold hypothesis. Cephalalgia 2024; 44:3331024241287224. [PMID: 39380339 DOI: 10.1177/03331024241287224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND The prodrome or premonitory phase is the initial phase of a migraine attack, and it is considered as a symptomatic phase in which prodromal symptoms may occur. There is evidence that attacks start 24-48 hours before the headache phase. Individuals with migraine also report several potential triggers for their attacks, which may be mistaken for premonitory symptoms and hinder migraine research. METHODS This review aims to summarize published studies that describe contributions to understanding the fine difference between prodromal/premonitory symptoms and triggers, give insights for research, and propose a way forward to study these phenomena. We finally aim to formulate a theory to unify migraine triggers and prodromal symptoms. For this purpose, a comprehensive narrative review of the published literature on clinical, neurophysiological and imaging evidence on migraine prodromal symptoms and triggers was conducted using the PubMed database. RESULTS Brain activity and network connectivity changes occur during the prodromal phase. These changes give rise to prodromal/premonitory symptoms in some individuals, which may be falsely interpreted as triggers at the same time as representing the early manifestation of the beginning of the attack. By contrast, certain migraine triggers, such as stress, hormone changes or sleep deprivation, acting as a catalyst in reducing the migraine threshold, might facilitate these changes and increase the chances of a migraine attack. Migraine triggers and prodromal/premonitory symptoms can be confused and have an intertwined relationship with the hypothalamus as the central hub for integrating external and internal body signals. CONCLUSIONS Differentiating migraine triggers and prodromal symptoms is crucial for shedding light on migraine pathophysiology and improve migraine management.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Arife Çimen Atalar
- Neurology Department, Health Sciences University, Istanbul Physical Therapy and Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilaria Cetta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fatemeh Farham
- Department of Headache, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medicine Sciences, Tehran, Iran
| | - Mira Fitzek
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hulya Karatas-Kursun
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkiye
| | - Marharyta Kholodova
- Department of Neurology and Neurosurgery, Medical Center "Dobrobut-Clinic" LLC, Kyiv, Ukraine
| | | | - Danilo Antonio Montisano
- Headache Center, Neuroalgology Dpt - Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Aleksandar Pantovic
- Neurology Clinic, Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Jeva Skarlet
- Western Tallinn Central Hospital, Tallinn, Estonia
| | - Dmytro Sotnikov
- Department Neurosurgery and Neurology, Sumy State University, Medical Center "Neuromed", Sumy, Ukraine
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Research Group, Departament de Medicina, Vall d'Hebron Institute of Research, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Research Group, Departament de Medicina, Vall d'Hebron Institute of Research, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Harriott AM, Kaya M, Ayata C. Oxytocin shortens spreading depolarization-induced periorbital allodynia. J Headache Pain 2024; 25:152. [PMID: 39289629 PMCID: PMC11406737 DOI: 10.1186/s10194-024-01855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA.
| | - Melih Kaya
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| |
Collapse
|
6
|
Thuraiaiyah J, Ashina H, Christensen RH, Al-Khazali HM, Wiggers A, Amin FM, Steiner TJ, Ashina M. Premonitory symptoms in migraine: A REFORM Study. Cephalalgia 2024; 44:3331024231223979. [PMID: 38299579 DOI: 10.1177/03331024231223979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Estimates of proportions of people with migraine who report premonitory symptoms vary greatly among previous studies. Our aims were to establish the proportion of patients reporting premonitory symptoms and its dependency on the enquiry method. Additionally, we investigated the impact of premonitory symptoms on disease burden using Headache Impact Test (HIT-6), Migraine Disability Assessment (MIDAS) and World Health Organization Disability Assessment 2.0 (WHODAS 2.0), whilst investigating how various clinical factors influenced the likelihood of reporting premonitory symptoms. METHODS In a cross-sectional study, premonitory symptoms were assessed among 632 patients with migraine. Unprompted enquiry was used first, followed by a list of 17 items (prompted). Additionally, we obtained clinical characteristics through a semi-structured interview. RESULTS Prompted enquiry resulted in a greater proportion reporting premonitory symptoms than unprompted (69.9% vs. 43.0%; p < 0.001) and with higher symptom counts (medians 2, interquartile range = 0-6 vs. 1, interquartile range = 0-1; p < 0.001). The number of symptoms correlated weakly with HIT-6 (ρ = 0.14; p < 0.001) and WHODAS scores (ρ = 0.09; p = 0.041). Reporting postdromal symptoms or triggers increased the probability of reporting premonitory symptoms, whereas monthly migraine days decreased it. CONCLUSIONS The use of a standardized and optimized method for assessing premonitory symptoms is necessary to estimate their prevalence and to understand whether and how they contribute to disease burden.
Collapse
Affiliation(s)
- Janu Thuraiaiyah
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Astrid Wiggers
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Timothy J Steiner
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Brain Sciences, Imperial College London, London, UK
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center on Headache Disorders, Glostrup, Denmark
| |
Collapse
|
7
|
Li C, Li Y, Zhang W, Ma Z, Xiao S, Xie W, Miao S, Li B, Lu G, Liu Y, Bai W, Yu S. Dopaminergic Projections from the Hypothalamic A11 Nucleus to the Spinal Trigeminal Nucleus Are Involved in Bidirectional Migraine Modulation. Int J Mol Sci 2023; 24:16876. [PMID: 38069205 PMCID: PMC10706593 DOI: 10.3390/ijms242316876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.
Collapse
Affiliation(s)
- Chenhao Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Yang Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wenwen Zhang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhenjie Ma
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Shaobo Xiao
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wei Xie
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
| | - Shuai Miao
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
| | - Bozhi Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
| | - Guangshuang Lu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Yingyuan Liu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wenhao Bai
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (C.L.); (Y.L.); (W.Z.); (Z.M.); (S.X.); (W.X.); (S.M.); (B.L.); (G.L.); (Y.L.); (W.B.)
| |
Collapse
|
8
|
Mykland MS, Uglem M, Stovner LJ, Brenner E, Snoen MS, Gravdahl GB, Sand T, Omland PM. Insufficient sleep may alter cortical excitability near the migraine attack: A blinded TMS crossover study. Cephalalgia 2023; 43:3331024221148391. [PMID: 36786296 DOI: 10.1177/03331024221148391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Migraine is a brain disorder with a multifaceted and unexplained association to sleep. Brain excitability likely changes periodically throughout the migraine cycle. In this study we examine the effect of insufficient sleep on neuronal excitability during the course of the migraine cycle. METHODS We examined 54 migraine patients after two nights of eight-hour habitual sleep and two nights of four-hour restricted sleep in a randomised, blinded crossover study. We performed transcranial magnetic stimulation and measured cortical silent period, short- and long-interval intracortical inhibition, intracortical facilitation and short-latency afferent inhibition. We analysed how responses changed before and after attacks with linear mixed models. RESULTS Short- interval intracortical inhibition was more reduced after sleep restriction compared to habitual sleep the shorter the time that had elapsed since the attack (p = 0.041), and specifically in the postictal phase (p = 0.013). Long-interval intracortical inhibition was more increased after sleep restriction with time closer before the attack (p = 0.006), and specifically in the preictal phase (p = 0.034). Short-latency afferent inhibition was more decreased after sleep restriction with time closer to the start of the attack (p = 0.026). CONCLUSION Insufficient sleep in the period leading up to a migraine attack may cause dysfunction in cortical GABAergic inhibition. The results also suggest that migraine patients may have increased need for sufficient sleep during a migraine attack to maintain normal neurological function after the attack.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Lars Jacob Stovner
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway.,National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Eiliv Brenner
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Mari Storli Snoen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Gøril Bruvik Gravdahl
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway.,National Advisory Unit on Headaches, Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.,Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| |
Collapse
|
9
|
Gollion C, De Icco R, Dodick DW, Ashina H. The premonitory phase of migraine is due to hypothalamic dysfunction: revisiting the evidence. J Headache Pain 2022; 23:158. [PMID: 36514014 PMCID: PMC9745986 DOI: 10.1186/s10194-022-01518-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To critically appraise the evidence for and against premonitory symptoms in migraine being due to hypothalamic dysfunction. DISCUSSION Some premonitory symptoms (e.g. fatigue, mood changes, yawning, and food craving) are associated with the physiologic effects of neurotransmitters such as orexins, neuropeptide Y, and dopamine; all of which are expressed in hypothalamic neurons. In rodents, electrophysiologic recordings have shown that these neurotransmitters modulate nociceptive transmission at the level of second-order neurons in the trigeminocervical complex (TCC). Additional insights have been gained from neuroimaging studies that report hypothalamic activation during the premonitory phase of migraine. However, the available evidence is limited by methodologic issues, inconsistent reporting, and a lack of adherence to ICHD definitions of premonitory symptoms (or prodromes) in human experimental studies. CONCLUSIONS The current trend to accept that premonitory symptoms are due to hypothalamic dysfunction might be premature. More rigorously designed studies are needed to ascertain whether the neurobiologic basis of premonitory symptoms is due to hypothalamic dysfunction or rather reflects modulatory input to the trigeminovascular system from several cortical and subcortical areas. On a final note, the available epidemiologic data raises questions as to whether the existence of premonitory symptoms and even more so a distinct premonitory phase is a true migraine phenomenon. Video recording of the debate held at the 1st International Conference on Advances in Migraine Sciences (ICAMS 2022, Copenhagen, Denmark) is available at: https://www.youtube.com/watch?v=d4Y2x0Hr4Q8 .
Collapse
Affiliation(s)
- Cedric Gollion
- Danish Headache Center, Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Roberto De Icco
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hakan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation / Traumatic Brain Injury, Rigshospitalet, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Eigenbrodt AK, Christensen RH, Ashina H, Iljazi A, Christensen CE, Steiner TJ, Lipton RB, Ashina M. Premonitory symptoms in migraine: a systematic review and meta-analysis of observational studies reporting prevalence or relative frequency. J Headache Pain 2022; 23:140. [DOI: 10.1186/s10194-022-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Observational studies on the prevalence of premonitory symptoms in people with migraine, preceding the headache pain (or aura) phase, have shown conflicting results. We conducted a systematic review and meta-analysis to estimate the prevalence, and relative frequency among clinic populations, of premonitory symptoms in people with migraine, overall and of the multifarious individual symptoms, and to review the methodologies used to assess them.
Methods
We searched PubMed and Embase for studies published from database inception until 31st of May 2022. Two investigators independently screened titles, abstracts, and full texts. We retrieved observational studies that reported the prevalence/relative frequency of one or more premonitory symptoms in people with migraine. Two investigators independently extracted data and assessed risk of bias. Results were pooled using random-effects meta-analysis. Our main outcomes were the percentage of people with migraine who experienced at least one premonitory symptom and the percentages who experienced different individual premonitory symptoms. To describe our outcomes, we used the terms prevalence for data from population-based samples and relative frequency for data from clinic-based samples. We also descriptively and critically assessed the methodologies used to assess these symptoms.
Results
The pooled estimated prevalence in population-based studies of at least one premonitory symptom was 29% (95% CI: 8–63; I2 99%) and the corresponding pooled estimated relative frequency in clinic-based studies was 66% (95% CI: 45–82; I2 99%). The data from clinic-based studies only supported meta-analysis of 11 of 96 individual symptoms, with relative frequency estimates ranging from 11 to 49%. Risk of bias was determined as high in 20 studies, moderate in seven, and low in two.
Conclusions
The substantial between-study heterogeneity demands cautious interpretation of our estimates. Studies showed wide methodological variations, and many lacked rigor. Overall, the evidence was insufficient to support reliable prevalence estimation or characterization of premonitory symptoms. More data are needed, of better quality, to confirm the existence of a distinctive premonitory phase of migraine, and its features. Methodological guidelines based on expert consensus are a prerequisite.
Collapse
|
11
|
Kopruszinski CM, Vizin R, Watanabe M, Martinez AL, de Souza LHM, Dodick DW, Porreca F, Navratilova E. Exploring the neurobiology of the premonitory phase of migraine preclinically - a role for hypothalamic kappa opioid receptors? J Headache Pain 2022; 23:126. [PMID: 36175828 PMCID: PMC9524131 DOI: 10.1186/s10194-022-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine initiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic KOR and migraine premonitory symptoms in rodent models. Methods Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination monitoring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of urination, water consumption and tactile sensory response. Results Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibition through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total volume of urine in mice but did not affect tactile sensory responses. Conclusion Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and urination but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even before the headache phase may be achievable by targeting the hypothalamic KOR. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01497-7.
Collapse
Affiliation(s)
| | - Robson Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley L Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA. .,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA.
| |
Collapse
|
12
|
Syvertsen Mykland M, Uglem M, Petter Neverdahl J, Rystad Øie L, Wergeland Meisingset T, Dodick DW, Tronvik E, Engstrøm M, Sand T, Moe Omland P. Sleep restriction alters cortical inhibition in migraine: A transcranial magnetic stimulation study. Clin Neurophysiol 2022; 139:28-42. [DOI: 10.1016/j.clinph.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
|
13
|
Abstract
Most people who see, treat or experience migraine will be aware that its clinical manifestations exceed the symptom of head pain. However, available acute treatments so far have targeted migraine symptoms only in the context of the pain phase of an attack. The associated disability clearly involves more than just these symptoms, and the phenotype can include additional painless features, including alterations in mood, cognition and homeostasis and sensory sensitivities. Recognising these symptoms, understanding their neurobiological basis and systematically recording them prospectively in clinical therapeutic trials are likely to offer valuable pathophysiological and therapeutic insights into this complex brain disorder, ultimately helping to improve the quality of lives of sufferers. We aim to explore the multifaceted disorder that is migraine, with a particular focus on the non-painful non-aura symptoms.
Collapse
Affiliation(s)
- Nazia Karsan
- NIHR-Welcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK
| | - Peter J Goadsby
- NIHR-Welcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK.,University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Relationship between non-headache symptoms and right to left shunt in episodic migraine. A single-center cross-sectional study. J Clin Neurosci 2021; 86:38-44. [PMID: 33775344 DOI: 10.1016/j.jocn.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
The relationship between right to left shunt (RLS) and non-headache symptoms (NHS) in episodic migraine is unknown. This study aimed to investigate the incidence and classification of RLS in episodic migraineurs, calculate the occurrence rate of NHS, and analyze the associations between RLS and NHS. We consecutively recruited 204 episodic migraine patients. Contrast-enhanced transcranial doppler was adopted to screen RLS. Structured questionnaire via face-to-face survey was conducted to collect clinical data. A total of 172 episodic migraineurs were included in the final analysis, of which 20 cases were migraine with aura. The positive rate of RLS was 47.1%, of which 50 cases (29.0%) had small shunt (Grade 1) and 31 cases (18.1%) had mid-large shunt (Grade 2-4). The most common NHS was nausea (115 (66.9%)), followed by headache aggravation with physical activity (96 (55.8%)), dizziness (93 (54.1%)), vomiting (77 (44.8%)) and phonophobia (74 (43.0%)). Yawning was more common in Grade 2-4 group than Grade 0 group (p = 0.012), while no statistical differences among other groups. Grade 2-4 group had a higher rate of headache aggravation with physical activity than grade 0 group (p = 0.008). Binary logistic regression analysis showed that yawning at premonitory phase, headache aggravation with physical activity and cranial autonomic symptoms during attack are independent predictors of RLS. In conclusion, yawning and headache aggravation with physical activity are more common in migraine patients with RLS. Besides aura, particular NHS may also serve as indicators for screening RLS in episodic migraineurs.
Collapse
|
15
|
González-Hernández A, Condés-Lara M, García-Boll E, Villalón CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol 2021; 17:179-199. [DOI: 10.1080/17425255.2021.1856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Enrique García-Boll
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
16
|
Woldeamanuel YW, Sanjanwala BM, Cowan RP. Endogenous glucocorticoids may serve as biomarkers for migraine chronification. Ther Adv Chronic Dis 2020; 11:2040622320939793. [PMID: 32973989 PMCID: PMC7495027 DOI: 10.1177/2040622320939793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Aims: The aims of this study were to: (a) identify differences in serum and cerebrospinal fluid (CSF) glucocorticoids among episodic migraine (EM) and chronic migraine (CM) patients compared with controls; (b) determine longitudinal changes in serum glucocorticoids in CM patients; and (c) determine migraine-related clinical features contributing to glucocorticoid levels. Methods: Serum and CSF levels of cortisol and corticosterone were measured using liquid chromatography-mass spectrometry among adult patients with EM, CM, and controls. Serum and CSF samples were collected from 26 and four participants in each group, respectively. Serum glucocorticoids were measured at a second timepoint after 2 years among 10 of the CM patients, six of whom reverted to EM while four persisted as CM. Receiver operating characteristic (ROC) analysis was made to assess the migraine diagnostic performance of glucocorticoids. Regression analysis was conducted to determine the link between glucocorticoid levels and migraine-related clinical variables. Results: CM patients exhibited significantly elevated serum and CSF levels of cortisol and corticosterone compared with controls and EM patients (age, sex, body mass index adjusted; Kruskal–Wallis p < 0.05). ROC showed area-under-curve of 0.89 to differentiate CM from EM. CM patients with remission had their serum glucocorticoids return to control or near EM levels (p < 0.05). Persistent CM showed unremitting serum glucocorticoids. Migraine frequency and disability contributed to increased cortisol, while pain self-efficacy predicted lower cortisol levels (p < 0.005). Conclusion: Endogenous glucocorticoids may be biomarkers for migraine progression and for monitoring treatment response. Improving pain self-efficacy skills may help optimize endogenous glucocorticoid levels, which in turn may prevent migraine attacks.
Collapse
Affiliation(s)
- Yohannes W Woldeamanuel
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Bharati M Sanjanwala
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert P Cowan
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Karsan N, Goadsby PJ. Imaging the Premonitory Phase of Migraine. Front Neurol 2020; 11:140. [PMID: 32269547 PMCID: PMC7109292 DOI: 10.3389/fneur.2020.00140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/07/2020] [Indexed: 01/06/2023] Open
Abstract
Migraine is a common and disabling brain disorder with a broad and heterogeneous phenotype, involving both pain and painless symptoms. Over recent years, more clinical and research attention has been focused toward the premonitory phase of the migraine attack, which can start up to days before the onset of head pain. This early phase can involve symptomatology, such as cognitive and mood change, yawning, thirst and urinary frequency and sensory sensitivities, such as photophobia and phonophobia. In some patients, these symptoms can warn of an impending headache and therefore offer novel neurobiological insights and therapeutic potential. As well as characterization of the phenotype of this phase, recent studies have attempted to image this early phase using functional neuroimaging and tried to understand how the symptoms are mediated, how a migraine attack may be initiated, and how nociception may follow thereafter. This review will summarize the recent and evolving findings in this field and hypothesize a mechanism of subcortical and diencephalic brain activation during the start of the attack, including that of basal ganglia, hypothalamus, and thalamus prior to headache, which causes a top-down effect on brainstem structures involved in trigeminovascular nociception, leading ultimately to headache.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Peter J. Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility and SLaM Biomedical Research Centre, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Alstadhaug KB, Andreou AP. Caffeine and Primary (Migraine) Headaches-Friend or Foe? Front Neurol 2019; 10:1275. [PMID: 31849829 PMCID: PMC6901704 DOI: 10.3389/fneur.2019.01275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The actions of caffeine as an antagonist of adenosine receptors have been extensively studied, and there is no doubt that both daily and sporadic dietary consumption of caffeine has substantial biological effects on the nervous system. Caffeine influences headaches, the migraine syndrome in particular, but how is unclear. Materials and Methods: This is a narrative review based on selected articles from an extensive literature search. The aim of this study is to elucidate and discuss how caffeine may affect the migraine syndrome and discuss the potential pathophysiological pathways involved. Results: Whether caffeine has any significant analgesic and/or prophylactic effect in migraine remains elusive. Neither is it clear whether caffeine withdrawal is an important trigger for migraine. However, withdrawal after chronic exposure of caffeine may cause migraine-like headache and a syndrome similar to that experienced in the prodromal phase of migraine. Sensory hypersensitivity however, does not seem to be a part of the caffeine withdrawal syndrome. Whether it is among migraineurs is unknown. From a modern viewpoint, the traditional vascular explanation of the withdrawal headache is too simplistic and partly not conceivable. Peripheral mechanisms can hardly explain prodromal symptoms and non-headache withdrawal symptoms. Several lines of evidence point at the hypothalamus as a locus where pivotal actions take place. Conclusion: In general, chronic consumption of caffeine seems to increase the burden of migraine, but a protective effect as an acute treatment or in severely affected patients cannot be excluded. Future clinical trials should explore the relationship between caffeine withdrawal and migraine, and investigate the effects of long-term elimination.
Collapse
Affiliation(s)
- Karl B. Alstadhaug
- Nordland Hospital Trust, Bodø, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Anna P. Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Abstract
BACKGROUND The clinical picture, but also neuroimaging findings, suggested the brainstem and midbrain structures as possible driving or generating structures in migraine. FINDINGS This has been intensely discussed in the last decades and the advent of modern imaging studies refined the involvement of rostral parts of the pons in acute migraine attacks, but more importantly suggested a predominant role of the hypothalamus and alterations in hypothalamic functional connectivity shortly before the beginning of migraine headaches. This was shown in the NO-triggered and also in the preictal stage of native human migraine attacks. Another headache type that is clinically even more suggestive of hypothalamic involvement is cluster headache, and indeed a structure in close proximity to the hypothalamus has been identified to play a crucial role in attack generation. CONCLUSION It is very likely that spontaneous oscillations of complex networks involving the hypothalamus, brainstem, and dopaminergic networks lead to changes in susceptibility thresholds that ultimately start but also terminate headache attacks. We will review clinical and neuroscience evidence that puts the hypothalamus in the center of scientific attention when attack generation is discussed.
Collapse
Affiliation(s)
- Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical center, Department of Anesthesia, Harvard medical School, Boston, MA, USA
| |
Collapse
|
20
|
Noori-Zadeh A, Karamkhani M, Seidkhani-Nahal A, Khosravi A, Darabi S. Evidence for hyperprolactinemia in migraineurs: a systematic review and meta-analysis. Neurol Sci 2019; 41:91-99. [PMID: 31444732 DOI: 10.1007/s10072-019-04035-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND One of the hypothalamus-pituitary axis hormones which may play a crucial role in pathophysiology of migraine is prolactin which is secreted from anterior pituitary gland and synthesized by various immune system cells as well. Whether prolactin blood levels can affect the migraine pathogenesis is an open question. Therefore, investigating prolactin circulatory levels in migraineurs may pave the way to underpin the mechanisms of migraine pathophysiology at biochemical levels. In the current investigation, the prolactin blood levels in the migraine subjects were investigated using systematic review and meta-analysis. METHODS Using online and specialized biomedical databases including Google Scholar, Medline, Pubmed, Pubmed Central, Embase, and Scopus, without the beginning date restriction until Feb 2019, the systematic review retrieved 11 publications in this systematic review after fulfilling for the inclusion and exclusion criteria. For heterogeneity, extent calculation statistical testing was applied. In the present study, the levels of circulatory prolactin in migraineurs assessed using standardized mean difference (SMD) as the effect size. RESULTS Q quantity and I2% statistic index showed a high heterogeneity in the 13 selected publications (188.370 and 92.568, respectively) and random-effects model was chosen for further analyses. The meta-analysis on a total number of 460 migraineurs and 429 healthy controls found that the weighted pooled SMD for the effects of prolactin blood concentrations on migraine pathogenesis was as follows: SMD = 1.435 (95% confidence interval, 0.854-2.015). CONCLUSION The current investigation presents evidence that prolactin blood levels are higher in migraineurs than healthy subjects.
Collapse
Affiliation(s)
- Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Morvarid Karamkhani
- Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Afra Khosravi
- Department of Clinical Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| |
Collapse
|