1
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
3
|
Description of a moderately acidotolerant and aerotolerant anaerobic bacterium Acidilutibacter cellobiosedens gen. nov., sp. nov. within the family Acidilutibacteraceae fam. nov., and proposal of Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. Syst Appl Microbiol 2023; 46:126376. [PMID: 36375421 DOI: 10.1016/j.syapm.2022.126376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
A Gram-stain positive, moderately thermophilic, acidotolerant and aerotolerant anaerobic bacterium, designated JN-28 T, was isolated from the pit mud of Chinese strong-flavor liquor. Growth was observed at 25-50 °C and pH 5.5-8.0 in the presence of 0-25 g l-1 NaCl (optimally at 45 °C, pH 6.0, without NaCl). Strain JN-28 T was heterotrophic, requiring yeast extract for growth. The major cellular fatty acids were iso-C15:0 and C14:0. The DNA G + C content of genomic DNA was 33.54 mol%. The strain was resistant to vancomycin (10 mg l-1). Genome analysis revealed the presence of genes involved in the response to mild acid stress and oxidative stress, and resistance to vancomycin. 16S rRNA gene-based phylogenetic analysis showed that strain JN-28 T shares ≤ 89.3 % sequence similarity with its closest relatives Sporanaerobacter acetigenes DSM 13106 T and other members in the order Tissierellales. Based on phenotypic and phylogenetic characteristics, Acidilutibacter cellobiosedens gen. nov., sp. nov. is proposed for the new genus and novel species with the type strain JN-28 T (=CCAM 418 T = JCM 39087 T). Further phylogenetic and phylogenomic analyses suggested strain JN-28 T represents a novel family within the order Tissierellales, for which Acidilutibacteraceae fam. nov. is proposed. In addition, the family Tissierellaceae was reclassified, Sporanaerobacteraceae fam. nov. and Tepidimicrobiaceae fam. nov. were formally proposed. Emended description of the family Tissierellaceae is also provided.
Collapse
|
4
|
Sarkar D, Vijayan R, Gourinath S, Sau AK. A unique aromatic cluster near the active site of H. pylori CPA is essential for catalytic function. Biophys J 2022; 121:248-262. [PMID: 34932956 PMCID: PMC8790187 DOI: 10.1016/j.bpj.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Polyamines are essential for cell growth and proliferation. In plants and many bacteria, including Helicobacter pylori, the parent polyamine putrescine is only produced through the metabolism of N-carbamoylputrescine by N-carbamoylputrescine amidase (CPA). Thus, CPA is a crucial intermediate enzyme. Moreover, the absence of CPA in humans makes its presence in H. pylori a potential target for the development of new therapeutics against this pathogen. Despite this enzyme's presence in plants and bacteria, its function is not completely explored. Using structure-guided biochemical and biophysical studies on H. pylori CPA, we discovered an aromatic cluster containing four conserved tryptophans near the catalytic site and elucidated its role. Mutational studies revealed that they are individually vital to enzyme function. Unlike wild-type, which forms a hexamer, the Trp to Ala mutants only formed dimers. Interestingly, two other conserved residues, Gln155 and Asp278, interact with the tryptophan cluster and perform similar roles. Our results indicate that aromatic-aromatic and H-bonding contacts between the residues (Trp156-Trp273, Trp196-Gln155, and Trp153-Asp278) play a crucial role in stimulating activity through hexamer formation. Additionally, Trp156 is essential to generating a catalytically efficient hexamer. These results suggest dual roles for the tryptophans; in hexamer formation and in generating its functionally active form, thereby providing a mechanistic understanding into the role of the cluster. We also elucidated the catalytic roles of Glu43, Lys115, and Cys152, which are present at the active site. Our findings highlight, for the first time, the importance of a tryptophan cluster in H. pylori CPA that can be exploited to design therapeutic inhibitors.
Collapse
Affiliation(s)
- Ditsa Sarkar
- National Institute of Immunology, New Delhi, India
| | | | | | - Apurba Kumar Sau
- National Institute of Immunology, New Delhi, India,Correspondence:
| |
Collapse
|
5
|
The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. mBio 2021; 12:e0181921. [PMID: 34340539 PMCID: PMC8406319 DOI: 10.1128/mbio.01819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems.
Collapse
|
6
|
Zhao D, Yang J, Liu T, Lu D, Zhang S, Yan L, Ni Y. Complete Genome Sequence Analysis of Acidithiobacillus ferrivorans XJFY6S-08 Reveals Environmental Adaptation to Alpine Acid Mine Drainage. Curr Microbiol 2021; 78:1488-1498. [PMID: 33660044 DOI: 10.1007/s00284-021-02423-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023]
Abstract
The present work reported the complete genome sequence analysis of Acidithiobacillus ferrivorans strain XJFY6S-08 isolated from acid mine drainage in Fuyun copper mine in Xinjiang, China, revealing the potential for extreme environmental adaptation. The strain XJFY6S-08 possesses 3,161,380 bp in length and 56.55% GC content. Genomic analysis revealed that this strain harbors metal-tolerant genes coding for the mer operon, arsRBC operon and a variety of metal assimilation and efflux proteins. Genes coding for K+/H+ transporting ATPase and the Na+/H+ antiporter gene nhaA for pH adaptation were identified. The presence of genes associated with various DNA repair enzymes and the synthesis of mycosporine-like amino acids precursor support the UVR resistance mechanisms. The genes related to membrane modifications (ppiBCD, slyD, surA, cfa and fabF) and resistance-nodulation-division (RND) family can play a crucial role in organic solvents tolerance. The strain XJFY6S-08 resists low-temperature conditions by a set of mechanisms such as changes of RNA metabolism, transmembrane transport, compatible solutes and transport, biofilm and EPS formation, chemotaxis and motility and ROS scavenging. These findings can provide important information for further studying the comparative genome and environmental adaptation mechanism of A. ferrivorans.
Collapse
Affiliation(s)
- Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Yongqing Ni
- School of Food Science, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
7
|
Isolation and genomic characterization of a pathogenic Providencia rettgeri strain G0519 in turtle Trachemys scripta. Antonie van Leeuwenhoek 2020; 113:1633-1662. [PMID: 32951105 DOI: 10.1007/s10482-020-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Providencia rettgeri infection has occurred occasionally in aquaculture, but is rare in turtles. Here, a pathogenic P. rettgeri strain G0519 was isolated from a diseased slider turtle (Trachemys scripta) in China, and qPCR assay was established for the RTX toxin (rtxD) gene. Histopathological examination showed that many inflammatory cells were infiltrated into heart, liver and intestine, as well as the necrosis of liver, kidney and spleen. The genome consisted of one circular chromosome (4.493 Mb) and one plasmid (18.8 kb), and predicted to contain 4170 and 19 protein-coding genes, respectively. Multiple pathogenic and virulence factors (e.g., fimbria, adhesion, invasion, toxin, hemolysin, chemotaxis, secretion system), multidrug-resistant genes (e.g., ampC, per-1, oxa-1, sul1, tetR) and a novel genomic resistance island PRI519 were identified. Comparative genome analysis revealed the closest relationship was with P. rettgeri, and with P. heimbachae closer than with other Providencia spp. To our knowledge, this was first report on genomic characterization of multidrug-resistant pathogenic P. rettgeri in cultured turtles.
Collapse
|
8
|
Vilas JM, Romero FM, Rossi FR, Marina M, Maiale SJ, Calzadilla PI, Pieckenstain FL, Ruiz OA, Gárriz A. Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:281-290. [PMID: 30342327 DOI: 10.1016/j.jplph.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 05/25/2023]
Abstract
The polyamines putrescine, spermidine and spermine participate in a variety of cellular processes in all organisms. Many studies have shown that these polycations are important for plant immunity, as well as for the virulence of diverse fungal phytopathogens. However, the polyamines' roles in the pathogenesis of phytopathogenic bacteria have not been thoroughly elucidated to date. To obtain more information on this topic, we assessed the changes in polyamine homeostasis during the infection of tomato plants by Pseudomonas syringae. Our results showed that polyamine biosynthesis and catabolism are activated in both tomato and bacteria during the pathogenic interaction. This activation results in the accumulation of putrescine in whole leaf tissues, as well as in the apoplastic fluids, which is explained by the induction of its synthesis in plant cells and also on the basis of its excretion by bacteria. We showed that the excretion of this polyamine by P. syringae is stimulated under virulence-inducing conditions, suggesting that it plays a role in plant colonization. However, no activation of bacterial virulence traits or induction of plant invasion was observed after the exogenous addition of putrescine. In addition, no connection was found between this polyamine and plant defence responses. Although further research is warranted to unravel the biological functions of these molecules during plant-bacterial interactions, this study contributes to a better understanding of the changes associated with the homeostasis of polyamines during plant pathogenesis.
Collapse
Affiliation(s)
- Juan Manuel Vilas
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Fernando Matías Romero
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Franco Rubén Rossi
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - María Marina
- Laboratorio de fisiología y bioquímica de la maduración de frutos, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Santiago Javier Maiale
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Pablo Ignacio Calzadilla
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Fernando Luis Pieckenstain
- Laboratorio de interacciones planta-microorganismo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Oscar Adolfo Ruiz
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina
| | - Andrés Gárriz
- Laboratorio de estrés biótico y abiótico en plantas, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino Km 8.200 CC 164 (7130), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Alam M, Srivastava A, Dutta A, Sau AK. Biochemical and biophysical studies ofHelicobacter pyloriarginine decarboxylase, an enzyme important for acid adaptation in host. IUBMB Life 2018; 70:658-669. [DOI: 10.1002/iub.1754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mashkoor Alam
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Abhishek Srivastava
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Ankita Dutta
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| | - Apurba Kumar Sau
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi Delhi India
| |
Collapse
|
10
|
Herschend J, Damholt ZBV, Marquard AM, Svensson B, Sørensen SJ, Hägglund P, Burmølle M. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Sci Rep 2017; 7:16483. [PMID: 29184101 PMCID: PMC5705676 DOI: 10.1038/s41598-017-16633-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/15/2017] [Indexed: 01/11/2023] Open
Abstract
Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. Protein abundances in community and single species biofilms were compared to describe occurring inter-species interactions and the resulting changes in active metabolic pathways. To obtain full taxonomic resolution between closely related species and empower correct protein quantification, we developed a novel pipeline for generating reduced reference proteomes for spectral database searches. Meta-proteomics profiling indicated that community development is dependent on cooperative interactions between community members facilitating cross-feeding on specific amino acids. Opposite regulation patterns of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, indicate that competition for limited resources also affects community development. Overall our results demonstrate the multitude of pathways involved in biofilm formation in mixed communities.
Collapse
Affiliation(s)
- Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zacharias B V Damholt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Andrea M Marquard
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Nelson TM, Borgogna JLC, Brotman RM, Ravel J, Walk ST, Yeoman CJ. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? Front Physiol 2015; 6:253. [PMID: 26483694 PMCID: PMC4586437 DOI: 10.3389/fphys.2015.00253] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a “fishy” odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.
Collapse
Affiliation(s)
- Tiffanie M Nelson
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | | | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Epidemiology and Public Health, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| |
Collapse
|
12
|
Almarza O, Núñez D, Toledo H. The DNA-binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori. Helicobacter 2015; 20:29-40. [PMID: 25256909 DOI: 10.1111/hel.12171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bacterial genomes are compacted by association with histone-like proteins to form a complex known as bacterial chromatin. The histone-like protein HU is capable of binding and bending the DNA molecule, a function related to compaction, protection, and regulation of gene expression. In Helicobacter pylori, HU is the only histone-like protein described so far. Proteomic analysis from our laboratory showed that this protein is overexpressed under acidic stress. MATERIALS AND METHODS We used a purified recombinant wild-type protein and two mutant proteins with the amino acid substitutions K3A/S27D and K62R/V63N/P64A to characterize the function of the N-terminal domain and the flexible arm of HU. RESULTS In vitro assays for DNA protection, bending, and compaction were performed. We also designed a H. pylori hup::cat mutant strain to study the role of HU in the acid stress response. HUwt protein binds DNA and promotes its bending and compaction. Compared with the wild-type protein, both mutant proteins have less affinity for DNA and an impaired bending and compaction ability. By using qRT-PCR, we confirmed overexpression of two genes related to acid stress response (ureA and speA). Such overexpression was abolished in the hup::cat strain, which shows an acid-sensitive phenotype. CONCLUSIONS Altogether, we have shown that HUwt -DNA complex formation is favored under acidic pH and that the complex protects DNA from endonucleolytic cleavage and oxidative stress damage. We also showed that the amino-terminal domain of HU is relevant to DNA-protein complex formation and that the flexible arm of HU is involved in the bending and compaction activities of HU.
Collapse
Affiliation(s)
- Oscar Almarza
- Department of Molecular and Cellular Biology, Laboratory of Molecular Microbiology, ICBM, Faculty of Medicine, University of Chile, Avda. Independencia, 1027, Santiago, Chile
| | | | | |
Collapse
|