1
|
Hofer M, Kim Y, Broguiere N, Gorostidi F, Klein JA, Amieva MR, Lutolf MP. Accessible homeostatic gastric organoids reveal secondary cell type-specific host-pathogen interactions in Helicobacter pylori infections. Nat Commun 2025; 16:2767. [PMID: 40113752 PMCID: PMC11926186 DOI: 10.1038/s41467-025-57131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the high prevalence of gastric diseases like gastric cancer and peptic ulcer disease attributed to Helicobacter pylori infections, there is still only a limited understanding of the underlying mechanisms. Existing in vitro models are either two-dimensional systems lacking the structural complexity of the gastric architecture, or complex three-dimensional systems that pose challenges for experimental access. In this study, we introduce a patterned homeostatic human gastric organoid-on-a-chip system with bilateral access that is capable of modeling H. pylori niche establishment and persistent colonization of the gastric epithelium. We show that in physiological apical acidic conditions, our organ-on-a-chip can generate pit cells of higher maturity in contrast to traditionally grown organoids. Upon infection with H. pylori for up to 6 days, these mature pit cells exhibit a distinctive response from other cell types, which was previously uncharacterized. Beyond its application in studying H. pylori infection, the increased structural and functional relevance of our model offers broader significance as a versatile platform for advancing our understanding of gastric epithelial cell interactions, gastric mucosal immunity, and host-pathogen interactions.
Collapse
Affiliation(s)
- Moritz Hofer
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Youlim Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - François Gorostidi
- Service d'oto-rhino-laryngologie et de chirurgie cervico-faciale, Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | - Jessica A Klein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
- Complex In Vitro Systems, Translational Safety, Genentech Inc., South San Francisco, CA, United States of America
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland.
| |
Collapse
|
2
|
Zhang Y, Liu T, He W. The application of organoids in cancers associated with pathogenic infections. Clin Exp Med 2024; 24:168. [PMID: 39052148 PMCID: PMC11272814 DOI: 10.1007/s10238-024-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cancers associated with pathogen infections are gradually becoming important threats to human health globally, and it is of great significance to study the mechanisms of pathogen carcinogenesis. Current mechanistic studies rely on animal and two-dimensional (2D) cell culture models, but traditional methods have been proven insufficient for the rapid modeling of diseases caused by new pathogens. Therefore, research focus has shifted to organoid models, which can replicate the structural and genetic characteristics of the target tissues or organs in vitro, providing new platforms for the study of pathogen-induced oncogenic mechanisms. This review summarizes the application of organoid technology in the studies of four pathogen-associated cancers: gastric cancer linked to Helicobacter pylori, liver cancer associated with hepatitis B virus or hepatitis C virus, colorectal cancer caused by Escherichia coli, and cervical cancer related to human papillomavirus. This review also proposes several limitations of organoid technology to optimize organoid models and advance the treatment of cancer associated with pathogen infections in the future.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China.
- Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, 730030, China.
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou, 730030, China.
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Agbemavor WSK, Buys EM. Dynamic Interactions between Diarrhoeagenic Enteroaggregative Escherichia coli and Presumptive Probiotic Bacteria: Implications for Gastrointestinal Health. Microorganisms 2023; 11:2942. [PMID: 38138086 PMCID: PMC10745617 DOI: 10.3390/microorganisms11122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This study delves into the temporal dynamics of bacterial interactions in the gastrointestinal tract, focusing on how probiotic strains and pathogenic bacteria influence each other and human health. This research explores adhesion, competitive exclusion, displacement, and inhibition of selected diarrhoeagenic Escherichia coli (D-EAEC) and potential probiotic strains under various conditions. Key findings reveal that adhesion is time-dependent, with both D-EAEC K2 and probiotic L. plantarum FS2 showing increased adhesion over time. Surprisingly, L. plantarum FS2 outperformed D-EAEC K2 in adhesion and exhibited competitive exclusion and displacement, with inhibition of adhesion surpassing competitive exclusion. This highlights probiotics' potential to slow pathogen attachment when not in competition. Pre-infecting with L. plantarum FS2 before pathogenic infection effectively inhibited adhesion, indicating probiotics' ability to prevent pathogen attachment. Additionally, adhesion correlated strongly with interleukin-8 (IL-8) secretion, linking it to the host's inflammatory response. Conversely, IL-8 secretion negatively correlated with trans-epithelial electrical resistance (TEER), suggesting a connection between tight junction disruption and increased inflammation. These insights offer valuable knowledge about the temporal dynamics of gut bacteria interactions and highlight probiotics' potential in competitive exclusion and inhibiting pathogenic bacteria, contributing to strategies for maintaining gastrointestinal health and preventing infections.
Collapse
Affiliation(s)
- Wisdom Selorm Kofi Agbemavor
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon, Accra P.O. Box LG 80, Ghana
| | - Elna Maria Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Xiong C, Zhao R, Xu J, Liang H, Zhang J, Huang Y, Luo X. Is Helicobacter pylori infection associated with osteoporosis? a systematic review and meta-analysis. J Bone Miner Metab 2023; 41:74-87. [PMID: 36348162 DOI: 10.1007/s00774-022-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION This study used systematic review and meta-analysis to evaluate the association between Helicobacter pylori infection and osteoporosis. MATERIALS AND METHODS PubMed, Ovid and Web of Science were searched to include observational studies published in English comparing bone mineral density changes between Helicobacter pylori-positive and -negative participants. The quality of the included literature was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). R software was used for meta-analysis, and odds ratio (OR) and 95% confidence interval (CI) were calculated to evaluate the relationship between Helicobacter pylori infection and osteoporosis. RESULTS Twenty-two studies involving 24,176 participants were included in the study. Our meta-analysis showed that Helicobacter pylori infection was significantly associated with the risk of osteoporosis (OR: 1.12, 95%CI: 1.03, 1.22). Participants infected with the CagA-positive Helicobacter pylori strain were more likely to develop osteoporosis (OR = 1.42, 95%CI: 1.09; 1.85). CONCLUSION Infection with Helicobacter pylori, particularly the CagA-positive strain, has been associated with an increased risk of osteoporosis. The bone health of Helicobacter pylori-positive patients deserves more attention.
Collapse
Affiliation(s)
- Chuang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Hao Liang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuan Jiagang, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Fusobacterium Nucleatum-Induced Tumor Mutation Burden Predicts Poor Survival of Gastric Cancer Patients. Cancers (Basel) 2022; 15:cancers15010269. [PMID: 36612265 PMCID: PMC9818776 DOI: 10.3390/cancers15010269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Co-infection of Helicobacter pylori and Fusobacterium nucleatum is a microbial biomarker for poor prognosis of gastric cancer patients. Fusobacterium nucleatum is associated with microsatellite instability and the accumulation of mutations in colorectal cancer. Here, we investigated the mutation landscape of Fusobacterium nucleatum-positive resected gastric cancer tissues using Illumina TruSight Oncology 500 comprehensive panel. Sequencing data were processed to identify the small nucleotide variants, small insertions and deletions, and unstable microsatellite sites. The bioinformatic algorithm also calculated copy number gains of preselected genes and tumor mutation burden. The recurrent genetic aberrations were identified in this study cohort. For gene amplification events, ERBB2, cell cycle regulators, and specific FGF ligands and receptors were the most frequently amplified genes. Pathogenic activation mutations of ERBB2, ERBB3, and PIK3CA, as well as loss-of-function of TP53, were identified in multiple patients. Furthermore, Fusobacterium nucleatum infection is positively correlated with a higher tumor mutation burden. Survival analysis showed that the combination of Fusobacterium nucleatum infection and high tumor mutation burden formed an extremely effective biomarker to predict poor prognosis. Our results indicated that the ERBB2-PIK3-AKT-mTOR pathway is frequently activated in gastric cancer and that Fusobacterium nucleatum and high mutation burden are strong biomarkers of poor prognosis for gastric cancer patients.
Collapse
|
6
|
Bacterial Involvement in Progression and Metastasis of Adenocarcinoma of the Stomach. Cancers (Basel) 2022; 14:cancers14194886. [PMID: 36230809 PMCID: PMC9562638 DOI: 10.3390/cancers14194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Infectious bacteria influence primary gastric carcinogenesis, organotropism, and metastatic progression by altering the microenvironment at the primary and secondary tumors. Key species include Helicobacter pylori (H. pylori) and Mycoplasma hyorhinis (M. hyorhinis). Inflammation caused by H. pylori virulence factors, such as CagA, VacA, and oipA, disrupt epithelial integrity, which allows the primary tumor to progress through the metastatic process. Evidence supports the activation of aquaporin-5 by CagA-positive H. pylori infection, promoting epithelial–mesenchymal transition via the extracellular signal-regulated kinase/mitogen-activated protein kinase (MEK/ERK) pathway, thus laying the foundation for metastatic disease. M. hyorhinis has also been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Abstract Gastric cancer metastasis is a process in which the tumor microenvironment may carry significant influence. Helicobacter pylori (H. pylori) infection is well-established as a contributor to gastric carcinoma. However, the role that these bacteria and others may play in gastric carcinoma metastasis is a current focus of study. A review of the literature was conducted to elucidate the process by which gastric adenocarcinoma metastasizes, including its ability to utilize both the lymphatic system and the venous system to disseminate. Studies that investigate the tumor microenvironment at both the primary and secondary sites were assessed in detail. H. pylori and Mycoplasma hyorhinis (M. hyorhinis) were found to be important drivers of the pathogenesis of gastric adenocarcinoma by modifying various steps in cell metastasis, including epithelial–mesenchymal transition, cell migration, and cell invasion. H. pylori is also a known driver of MALT lymphoma, which is often reversible simply with the eradication of infection. M. hyorhinis has been implicated in gastric neoplasia via β-catenin stabilization and subsequent activation of the WNT-signaling pathway, promoting gastric cancer cell motility and inciting cancer progression. Fusobacterium nucleatum (F. nucleatum) and its association with worse prognosis in diffuse-type gastric adenocarcinoma are also reviewed. Recognition of the roles that bacteria play within the metastatic cascade is vital in gastrointestinal adenocarcinoma treatment and potential reoccurrence. Further investigation is needed to establish potential treatment for metastatic gastric carcinoma by targeting the tumor microenvironment.
Collapse
|
7
|
Idowu S, Bertrand PP, Walduck AK. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter 2022; 27:e12891. [PMID: 35384141 PMCID: PMC9287064 DOI: 10.1111/hel.12891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
For decades, traditional in vitro and in vivo models used for the study of Helicobacter pylori infection have relied heavily on the use of gastric cancer cell lines and rodents. Major challenges faced by these methods have been the inability to study cancer initiation in already cancerous cell lines, and the difficulty in translating results obtained in animal models due to genetic differences. These challenges have prevented a thorough understanding of the pathogenesis of disease and slowed the development of cancer therapies and a suitable vaccine against the pathogen. In recent years, the development of gastric organoids has provided great advantages over the traditional in vivo and in vitro models due to their similarities to the human stomach in vivo, their ease of use, and the capacity for long-term culture. This review discusses the advantages and limitations of existing in vivo and in vitro models of H. pylori infection, and how gastric organoids have been applied to study H. pylori pathogenesis, with a focus on how the pathogen interacts with the gastric epithelium, inflammatory processes, epithelial repair, and cancer initiation. The potential applications of organoids to address more complex questions on the role of hormones, vaccine-induced immunity are also discussed.
Collapse
|
8
|
Solaymani-Mohammadi S. Mucosal Defense Against Giardia at the Intestinal Epithelial Cell Interface. Front Immunol 2022; 13:817468. [PMID: 35250996 PMCID: PMC8891505 DOI: 10.3389/fimmu.2022.817468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
Human giardiasis, caused by the protozoan parasite Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis, Lamblia intestinalis), is one of the most commonly-identified parasitic diseases worldwide. Chronic G. duodenalis infections cause a malabsorption syndrome that may lead to failure to thrive and/or stunted growth, especially in children in developing countries. Understanding the parasite/epithelial cell crosstalk at the mucosal surfaces of the small intestine during human giardiasis may provide novel insights into the mechanisms underlying the parasite-induced immunopathology and epithelial tissue damage, leading to malnutrition. Efforts to identify new targets for intervening in the development of intestinal immunopathology and the progression to malnutrition are critical. Translating these findings into a clinical setting will require analysis of these pathways in cells and tissues from humans and clinical trials could be devised to determine whether interfering with unwanted mucosal immune responses developed during human giardiasis provide better therapeutic benefits and clinical outcomes for G. duodenalis infections in humans.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
9
|
Gobert AP, Wilson KT. Induction and Regulation of the Innate Immune Response in Helicobacter pylori Infection. Cell Mol Gastroenterol Hepatol 2022; 13:1347-1363. [PMID: 35124288 PMCID: PMC8933844 DOI: 10.1016/j.jcmgh.2022.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the fourth most common cause of cancer-related death worldwide. The intestinal type of GC progresses from acute to chronic gastritis, multifocal atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma. Infection of the stomach by Helicobacter pylori, a Gram-negative bacterium that infects approximately 50% of the world's population, is the causal determinant that initiates the gastric inflammation and then disease progression. In this context, the induction of the innate immune response of gastric epithelial cells and myeloid cells by H. pylori effectors plays a critical role in the outcome of the infection. However, only 1% to 3% of infected patients develop gastric adenocarcinoma, emphasizing that other mechanisms regulate the localized non-specific response, including the gastric microbiota and genetic factors. This review summarizes studies describing the factors that induce and regulate the mucosal innate immune response during H. pylori infection.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee.
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
10
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Yan HF, Zhang T, Sun PM, Sun HW, Zhou JL, Yang JW, Li ZP, Cui Y. Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:26-37. [PMID: 35065758 DOI: 10.1016/j.lssr.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 06/14/2023]
Abstract
Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively. Then the identified proteins were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for further exploration. The results of the analysis showed that the ribosomes of gastric mucosal cells were significantly impacted after exposure to simulated microgravity for 3 days, and the cells appeared to be in a state of stress and inflammation. Exposure to simulated microgravity for 7 days significantly affected the mitochondria of the cells, oxidative stress became more evident, while inflammation and weakened connections were observed in the cells. The results of this study highlighted the temporal response trend of gastric mucosal cells to the stressor of microgravity at the two time points of 3 and 7 days. These findings will provide insights into the development of methods to protect the gastric mucosa during space flight.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
11
|
Zhao Z, Peng H, Han T, Jiang Z, Yuan J, Liu X, Wang X, Zhang Y, Wang T. Pharmacological characterization and biological function of the interleukin-8 receptor, CXCR2, in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 120:441-450. [PMID: 34933090 DOI: 10.1016/j.fsi.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Interleukin-8 (IL-8 or C-X-C motif chemokine ligand 8, CXCL8) is a cytokine secreted by numerous cell types and is best known for its functional roles in inflammatory response by binding to specific receptors (the interleukin-8 receptors, IL-8Rs). From the transcriptomic data of largemouth bass (Micropterus salmoides), we identified an IL-8R that is highly homologous to the functionally validated teleost IL-8Rs. The M. salmoides IL-8 receptor (MsCXCR2) was further compared with the C-X-C motif chemokine receptor 2 subfamily by phylogenetic analysis. Briefly, the full-length CDS sequence of MsCXCR2 was cloned into the pEGFP-N1 plasmid, and the membrane localization of fusion expressing MsCXCR2-EGFP was revealed in HEK293 cells. To determine the functional interaction between IL-8 and MsCXCR2, secretory expressed Larimichthys crocea IL-8 (LcIL-8) was used to stimulate MsCXCR2 expressing cells. MsCXCR2 was demonstrated to be activated by LcIL-8, leading to receptor internalization, which was further revealed by the detection of extracellular regulated protein kinase (ERK) phosphorylation. Quantitative real-time PCR was used to evaluate the expressional distribution and variation of MsCXCR2 in healthy and Nocardia seriolae infected fish. Based on our findings, MsCXCR2 was constitutively expressed in all examined tissues, despite at different levels. Furthermore, gene expression was found to be significantly upregulated in the liver and head kidney of diseased fish. Collectively, our findings reveal the molecular activity of MsCXCR2 and indicate the functional involvement of this IL-8R in the immune response induced by N. seriolae in M. salmoides.
Collapse
Affiliation(s)
- Zihao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Hao Peng
- Department of Life Science and Engineering, Jining University, Jining, Shandong, 273155, PR China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xue Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Xiaoqian Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China
| | - Yuexing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, PR China.
| |
Collapse
|
12
|
Park AJ, Wright MA, Roach EJ, Khursigara CM. Imaging host-pathogen interactions using epithelial and bacterial cell infection models. J Cell Sci 2021; 134:134/5/jcs250647. [PMID: 33622798 DOI: 10.1242/jcs.250647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Madison A Wright
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada .,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
13
|
Abstract
Understanding the mechanisms involved in induction and regulation of the immune and inflammatory response to Helicobacter pylori is extremely important in determining disease outcomes. H pylori expresses a plethora of factors that influence the host response. Vaccines against H pylori are desperately needed for the prevention of gastric carcinogenesis, especially with the increasing trends in antimicrobial resistance. This review summarizes some important findings, published between 1 April 2019 and 31 March 2020, in the areas of H pylori-mediated inflammation, immunity and vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- School of Medicine, Nottingham Digestive Diseases Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Philippe Lehours
- UMR1053 Bordeaux Research In Translational Oncology, INSERM, Univ. Bordeaux, BaRITOn, Bordeaux, France.,French National Reference Centre for Campylobacters & Helicobacters, Hôpital Pellegrin, Bordeaux, France
| |
Collapse
|
14
|
Lee JY, Kim N, Choi YJ, Park JH, Ashktorab H, Smoot DT, Lee DH. Expression of Tight Junction Proteins According to Functional Dyspepsia Subtype and Sex. J Neurogastroenterol Motil 2020; 26:248-258. [PMID: 32235032 PMCID: PMC7176499 DOI: 10.5056/jnm19208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background/Aims To determine whether the expression of tight junction proteins (TJPs) differs depending on the subtype of functional dyspepsia (FD) and sex. Methods Control (n = 95) and FD (n = 165) groups based on Rome III criteria were prospectively enrolled. Gastric mucosal mRNA expression levels of various TJPs (claudins [CLDN] 1, 2, and 4; zonula occludens-1; occludin [OCLN]) were assessed by reverse transcription polymerase chain reaction. Western blot was performed to determine the levels of various TJPs. Helicobacter pylori infection status was evaluated by histology, rapid urease test, and culture. Questionnaires were analyzed. Results In all groups irrespective of H. pylori, FD group showed significantly higher CLDN2 mRNA levels than control group (P = 0.048). The level of CLDN4 mRNA expression was significantly lower in female FD group than in male FD group (P = 0.018). In H. pylori uninfected subjects, the level of CLDN1 mRNA expression in female FD group was significantly lower than that of male FD group (P = 0.014). The level of CLDN2 mRNA expression was significantly higher in the male postprandial distress syndrome (P = 0.001) and male epigastric pain syndrome (P = 0.023) groups than in the male control group. In Western blot analysis, the expression of OCLN was significantly elevated 48 hour after the culture with H. pylori strain 43504. Conclusions H. pylori can affect a variety of TJPs, particularly claudin-4 and occludin. Claudin-2 is thought to be involved in FD irrespective of H. pylori status, especially in the pathophysiology of male FD.
Collapse
Affiliation(s)
- Ju Yup Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea.,Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee, USA
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Seeger AY, Ringling MD, Zohair H, Blanke SR. Risk factors associated with gastric malignancy during chronic Helicobacter pylori Infection. MEDICAL RESEARCH ARCHIVES 2020; 8:2068. [PMID: 37655156 PMCID: PMC10470974 DOI: 10.18103/mra.v8i3.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic Helicobacter pylori (Hp) infection is considered to be the single most important risk factor for the development of gastric adenocarcinoma in humans, which is a leading cause of cancer-related death worldwide. Nonetheless, Hp infection does not always progress to malignancy, and, gastric adenocarcinoma can occur in the absence of detectable Hp carriage, highlighting the complex and multifactorial nature of gastric cancer. Here we review known contributors to gastric malignancy, including Hp virulence factors, host genetic variation, and multiple environmental variables. In addition, we assess emerging evidence that resident gastric microflora in humans might impact disease progression in Hp-infected individuals. Molecular approaches for microbe identification have revealed differences in the gastric microbiota composition between cancer and non-cancerous patients, as well as infected and uninfected individuals. Although the reasons underlying differences in microbial community structures are not entirely understood, gastric atrophy and hypochlorhydria that accompany chronic Hp infection may be a critical driver of gastric dysbiosis that promote colonization of microbes that contribute to increased risk of malignancy. Defining the importance and role of the gastric microbiota as a potential risk factor for Hp-associated gastric cancer is a vital and exciting area of current research.
Collapse
Affiliation(s)
- Ami Y. Seeger
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Megan D. Ringling
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Huzaifa Zohair
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| | - Steven R. Blanke
- Department of Microbiology, School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
- Biomedical and Translational Sciences Department, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|