1
|
Chen D, Wang W, Chen X, Liang N, Li J, Ding W, Zhang H, Yang Z, Zhao H, Liu Z. Plant-derived extracts or compounds for Helicobacter-associated gastritis: a systematic review of their anti-Helicobacter activity and anti-inflammatory effect in animal experiments. Chin Med 2025; 20:53. [PMID: 40264171 PMCID: PMC12013188 DOI: 10.1186/s13020-025-01093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Helicobacter infection, which is the leading cause of gastritis and stomach cancer, has become common worldwide. Almost all Helicobacter-infected patients have chronic active gastritis, also known as Helicobacter-associated gastritis (HAG). However, the eradication rate of Helicobacter is decreasing due to the poor efficacy of current medications, which causes infection to recur, inflammation to persist, and stomach cancer to develop. Natural components have robust antibacterial activity and anti-inflammatory capacity, as confirmed by many studies of alternative natural medicines. PURPOSE This article aimed to conduct a comprehensive search and meta-analysis to evaluate the efficacy of anti-Helicobacter and anti-inflammatory activities of plant-derived extracts or compounds that can treat HAG in animal experiments. We intended to provide detailed preclinical-research foundation including plant and compound information, as well as the mechanisms by which these plant-derived substances inhibit the progression of Helicobacter infection, gastritis and neoplasms for future study. METHODS The systematic review is aligned with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and the protocol was registered in PROSPERO (CRD42024527889). An extensive search was performed across multiple databases, including PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), the Chinese Scientific Journal database (VIP), the Wanfang database, and the China biomedical literature service system (SinoMed), up until November 2023. Meta-analysis on Review Manager software (RevMan 5.4) estimating anti-Helicobacter and anti-inflammatory activity was performed. We used the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) risk of bias tool to evaluate the risk of bias of each study included. RESULTS Our study encompassed 61 researches, comprised 36 extracts and 37 compounds improving HAG by inhibiting Helicobacter infection, the inflammatory response, oxidative stress, and regulating apoptosis and proliferation. Sixteen families especially Asteraceae, Fabaceae and Rosaceae and nine classes including Terpenoids, Alkaloids, Phenols, and Flavonoids may be promising directions for valuable new drugs. The Meta-analyse demonstrated the plant-base substance treatments possess significant anti-Helicobacter and anti-inflammation activity comparing to control groups. The included plants and compounds confirmed that signaling pathways NF-κB, JAK2/STAT3, MAPK, TLR4/MyD88, PI3K/AKT, NLRP3/Caspase-1 and NRF2/HO-1 play a key role in the progression of HAG. CONCLUSION Plant-derived extracts or compounds actively improve HAG by modulating relevant mechanisms and signaling pathways, particularly through the anti-Helicobacter and inflammatory regulation ways. Further researches to apply these treatments in humans are needed, which will provide direction for the future development of therapeutic drugs to increase eradication rate and alleviate gastritis.
Collapse
Affiliation(s)
- Danni Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Wenlai Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei, Dongcheng District, Beijing, 100700, China
| | - Xiangyun Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiawang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Wei Ding
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Hongrui Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| | - Hongxia Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen Nei, Dongcheng District, Beijing, 100700, China.
| | - Zhenhong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
2
|
Zhang PP, Tang JN, Xiang BY, Li L, Xie MZ, Qu HY. Unlocking the potential of Radix Astragali and its active ingredients in gastric ulcer therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-15. [PMID: 40111320 DOI: 10.1080/10286020.2025.2475475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
We studied the protective effects of Radix Astragali (RA) on gastric ulcer (GU). A literature search was conducted using databases from Web of Science, PubMed, Springer, ScienceDirect, Science Direct Chinese National Knowledge Infrastructure (CNKI), and Wanfang. The inclusion criteria for this study were limited to reports on the effects of RA, AS-IV, cycloastragenol, astragalus polysaccharide (APS), and astragalosides (AST) in the treatment of gastric ulcers. Any studies involving gastric lesions that were precancerous or cancerous were eliminated. The search period was from database inception through June 2024. The results suggested RA hold promiseas potential novel therapeutics for the therapy of GU.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Jing-Ni Tang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Bo-Yu Xiang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- School of informatics, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| |
Collapse
|
3
|
Wang L, Lian YJ, Dong JS, Liu MK, Liu HL, Cao ZM, Wang QN, Lyu WL, Bai YN. Traditional Chinese medicine for chronic atrophic gastritis: Efficacy, mechanisms and targets. World J Gastroenterol 2025; 31:102053. [PMID: 40061592 PMCID: PMC11886037 DOI: 10.3748/wjg.v31.i9.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic atrophic gastritis (CAG) is an important stage of precancerous lesions of gastric cancer. Effective treatment and regulation of CAG are essential to prevent its progression to malignancy. Traditional Chinese medicine (TCM) has shown multi-targeted efficacy in CAG treatment, with advantages in enhancing gastric mucosal barrier defense, improving microcirculation, modulating inflammatory and immune responses, and promoting lesion healing, etc. Clinical studies and meta-analyses indicate that TCM provides significant benefits, with specific Chinese herbal compounds and monomers demonstrating protective effects on the gastric mucosa through mechanisms including anti-inflammation, anti-oxidation, and regulation of cellular proliferation and apoptosis, etc. Finally, it is pointed out that the efficacy of TCM in the treatment of CAG requires standardized research and unified standards, and constantly clarifies and improves the evaluation criteria of each dimension of gastric mucosal barrier function.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yan-Jie Lian
- Division of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Jin-Sheng Dong
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ming-Kun Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hong-Liang Liu
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng-Min Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Nan Wang
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wen-Liang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yu-Ning Bai
- Department of Gastroenterology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
4
|
Shi M, Ma G, Yang X. Artesunate: A Review of Its Potential Therapeutic Effects and Mechanisms in Digestive Diseases. Pharmaceutics 2025; 17:299. [PMID: 40142963 PMCID: PMC11945051 DOI: 10.3390/pharmaceutics17030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Artesunate (ART), an artemisinin-derived semi-synthetic sesquiterpene lactone distinguished by its unique endoperoxide group, has become a cornerstone of clinical antimalarial therapy. Recent research has demonstrated its broad pharmacological profile, including its potent antimalarial, anti-inflammatory, anti-tumor, antidiabetic, immunomodulatory, and anti-fibrotic properties. These discoveries have significantly broadened the therapeutic scope of ART and offer new perspectives for its potential use in treating gastrointestinal disorders. Mechanistically, ART exerts significant therapeutic effects against diverse gastrointestinal pathologies-such as gastric ulcers, ulcerative colitis (UC), hepatic fibrosis (HF), gastric cancer, hepatocellular carcinoma, and colorectal cancer-via multimodal mechanisms, including cell cycle modulation, apoptosis induction, the suppression of tumor cell invasion and migration, proliferation inhibition, ferroptosis activation, and immune regulation. This review evaluates existing evidence on ART's therapeutic applications and molecular mechanisms in digestive diseases, intending to elucidate its clinical translation potential. ART emerges as a promising multi-target agent with significant prospects for improving the management of gastrointestinal disorders.
Collapse
Affiliation(s)
| | | | - Xiulan Yang
- Department of Pharmacology, The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.S.)
| |
Collapse
|
5
|
Zhao H, Wang Y, Ren J. Helicobacter pylori and rheumatoid arthritis: Investigation of relation from traditional Chinese medicine. Microb Pathog 2025; 199:107239. [PMID: 39708982 DOI: 10.1016/j.micpath.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that predominantly affects synovial joints, manifesting with joint swelling, pain, and stiffness. In advanced stages, unchecked inflammation can inflict damage on bone and cartilage, resulting in disabilities and deformities of the joints. Additionally, systemic and extra-articular complications may arise due to the consequences of uncontrolled inflammation. Helicobacter pylori (H. pylori) is one of the most prevalent chronic bacterial infections in humans. This microorganism is a spiral-shaped, flagellated, microaerophilic gram-negative bacterium. Prolonged exposure leads to the activation of the immune system, with infected gastric mucosa epithelial cells continuously producing cytokines. This production, in turn, triggers the generation of antibodies as well as T Helper 1 and T Helper 2 effector T cells. The persistent antigenic stimulation resulting from H. pylori infection could lead to the progression of autoimmune diseases. Numerous clinical and pharmacological trials have illustrated the efficacy of traditional Chinese medicine against H. pylori. This review aims to delve into the connection between H. pylori and rheumatoid arthritis so as understand the pathogenesis. The concluding section of this review explores the interplay of Chinese medicine and Helicobacter pylori concerning rheumatoid arthritis.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| | - Yige Wang
- Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Lixia District, Jinan, 250013, China
| | - Jiahui Ren
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| |
Collapse
|
6
|
Zhang PP, Li L, Qu HY, Chen GY, Xie MZ, Chen YK. Traditional Chinese medicine in the treatment of Helicobacter pylori-related gastritis: The mechanisms of signalling pathway regulations. World J Gastroenterol 2025; 31:96582. [PMID: 39839895 PMCID: PMC11684169 DOI: 10.3748/wjg.v31.i3.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Helicobacter pylori-associated gastritis (HPAG) is a common condition of the gastrointestinal tract. However, extensive and long-term antibiotic use has resulted in numerous adverse effects, including increased resistance, gastrointestinal dysfunction, and increased recurrence rates. When these concerns develop, traditional Chinese medicine (TCM) may have advantages. TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body. It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication. This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways, which reflects the flexibility of TCM in treating diseases and the advantages of multi-level, multi-pathway, and multi-target treatments for HPAG.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Guang-Yu Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Precision Medicine Research and Development Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
7
|
Elbehiry A, Abalkhail A, Anajirih N, Alkhamisi F, Aldamegh M, Alramzi A, AlShaqi R, Alotaibi N, Aljuaid A, Alzahrani H, Alzaben F, Rawway M, Ibrahem M, Abdelsalam MH, Rizk NI, Mostafa MEA, Alfaqir MR, Edrees HM, Alqahtani M. Helicobacter pylori: Routes of Infection, Antimicrobial Resistance, and Alternative Therapies as a Means to Develop Infection Control. Diseases 2024; 12:311. [PMID: 39727641 PMCID: PMC11727528 DOI: 10.3390/diseases12120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, H. pylori frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics. This review examines H. pylori infection, encompassing transmission pathways, treatment modalities, antibiotic resistance, and eradication strategies. Additionally, it discusses alternative therapeutic approaches such as probiotics, anti-biofilm agents, phytotherapy, phototherapy, phage therapy, lactoferrin therapy, and vaccine development. These strategies aim to reduce antimicrobial resistance and enhance treatment outcomes for H. pylori infections. While alternative therapies can maintain low bacterial levels, they do not achieve complete eradication of H. pylori. These therapies are designed to bolster the immune response, minimize side effects, and provide gastroprotective benefits, rendering them suitable for adjunctive use alongside conventional treatments. Probiotics may serve as adjunctive therapy for H. pylori; however, their effectiveness as a monotherapy is limited. Photodynamic and phage therapies exhibit potential in targeting H. pylori infections, including those caused by drug-resistant strains, without the use of antibiotics. The development of a reliable vaccine is also critical for the eradication of H. pylori. This review identifies candidate antigens such as VacA, CagA, and HspA, along with various vaccine formulations, including vector-based and subunit vaccines. Some vaccines have demonstrated efficacy in clinical trials, while others have shown robust immune protection in preclinical studies. Nevertheless, each of the aforementioned alternative therapies requires thorough preclinical and clinical evaluation to ascertain their efficacy, side effects, cost-effectiveness, and patient compliance.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Fahad Alkhamisi
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Aldamegh
- Pathology and Laboratory Medicine Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Alramzi
- Medical Radiology Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Riyad AlShaqi
- Biomedical Engineer, Armed Forces Medical Services, Riyadh 12426, Saudi Arabia
| | - Naif Alotaibi
- Medical Hospital Administration Department, Armed Forces Hospital-Jubail, Jubail 31951, Saudi Arabia
| | - Abdullah Aljuaid
- Medical Hospital Administration Department, Armed Forces Hospitals in Al Kharj, AL Kharj 16278, Saudi Arabia
| | - Hilal Alzahrani
- Physical Medicine and Rehabilitation Department, Armed Forces Center for Health Rehabilitation, Taif 21944, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Moustafa H. Abdelsalam
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Nermin I. Rizk
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Moneef Rohail Alfaqir
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk 74191, Saudi Arabia
| | - Mubarak Alqahtani
- Department of Radiology, King Fahd Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| |
Collapse
|
8
|
Zhai S, Gao Y, Jiang Y, Li Y, Fan Q, Tie S, Wu Y, Gu S. Weizmannia coagulans BC99 affects valeric acid production via regulating gut microbiota to ameliorate inflammation and oxidative stress responses in Helicobacter pylori mice. J Food Sci 2024; 89:9985-10002. [PMID: 39556495 DOI: 10.1111/1750-3841.17514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Helicobacter pylori is a highly prevalent pathogen in human gastric mucosa epithelial cells with strong colonization ability. Weizmannia coagulans is a kind of active microorganism that is beneficial to the improvement of host gut microbiota balance and can prevent and treat intestinal diseases. We investigated the beneficial effects of W. coagulans BC99 in H. pylori infected mice and measured inflammation response, oxidative stress, and gut microbiota. Results showed that BC99 could alleviate the gastric inflammation, inhibit the increasing of inflammation parameters endotoxin, interleukin-10, transforming growth factor-β, and interferon-γ and oxidative stress myeloperoxidase and malondialdehyde, promote the levels of superoxide dismutase and catalase. Furthermore, 16S rRNA gene sequencing analysis revealed that BC99 reversed the change of gut microbiota by reducing the abundance of Olsenella, Candidatus_Saccharimonas, Monoglobus, and increasing the abundance of Tyzzerella. Meanwhile, BC99 caused elevated levels of Ligilactobacillus and Lactobacillus. In view of the beneficial effect of BC99 on the content of short-chain fatty acid, valeric acid with sodium valerate interfered with H. pylori infection in mice found that valeric acid had a good restorative effect of H. pylori infection relating inflammation and oxidative stress responses. These results suggest that W. coagulans BC99 can be used as a potential probiotic to prevent and treat H. pylori infection by regulating the inflammation, oxidative stress, and gut microbiota.
Collapse
Affiliation(s)
- Shirui Zhai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yiru Jiang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuwan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Qiuxia Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
9
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Qiao K, Song Z, Liang L, Zhou X, Feng X, Xu Y, Yang R, Sun B, Zhang Y. Exploring the Underlying Mechanisms of Preventive Treatment Related to Dietary Factors for Gastric Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17782-17801. [PMID: 39102359 DOI: 10.1021/acs.jafc.4c05361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Gastric diseases have emerged as one of the main chronic diseases in humans, leading to considerable health, social, and economic burdens. As a result, using food or "food and medicinal homologous substances" has become an effective strategy to prevent gastric diseases. Diet may play a crucial role in the prevention and mitigation of gastric diseases, particularly long-term and regular intake of specific dietary components that have a protective effect on the stomach. These key components, extracted from food, include polysaccharides, alkaloids, terpenoids, polyphenols, peptides, probiotics, etc. The related mechanisms involve regulating gastric acid secretion, protecting gastric mucosa, increasing the release of gastric defense factors, decreasing the level of inflammatory factors, inhibiting Helicobacter pylori infection, producing antioxidant effects or reducing oxidative damage, preventing gastric oxidative stress by inhibiting lipid peroxides, activating Nrf2 signaling pathway, and inhibiting NF-κB, TLR4, and NOS/NO signaling pathways.
Collapse
Affiliation(s)
- Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zichong Song
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100048, China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Yang
- Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Ou L, Liu HR, Shi XY, Peng C, Zou YJ, Jia JW, Li H, Zhu ZX, Wang YH, Su BM, Lai YQ, Chen MY, Zhu WX, Feng Z, Zhang GM, Yao MC. Terminalia chebula Retz. aqueous extract inhibits the Helicobacter pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117428. [PMID: 37981121 DOI: 10.1016/j.jep.2023.117428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia chebula Retz., known as the King of Traditional Tibetan Medicine, is widely used for treating various ailments, particularly stomach disorders. It exhibited inhibitory activity against helicobacter pylori. AIM OF THE STUDY The exact mechanism by which T. chebula combats H. pylori infection remains unclear. Therefore, this study aimed to investigate its mechanism of action and the key pathways and targets involved. MATERIAL AND METHODS Minimum inhibitory concentration (MIC) assay, scanning electron microscope, and inhibiting kinetics curves were conducted. The mRNA expressions were measured by RNA-seq analysis and RT-QPCR. ELISA and Western blot were used to detect the changes in proteins. The main compounds were analyzed by High-performance Liquid Chromatography. The interaction between the compound and target was predicted by Molecular Docking. RESULTS The study revealed that T. chebula disrupted the structure of H. pylori bacteria and inhibited Cag A protein expression. Additionally, T. chebula can reduce the expression of flaA, flaB, babA, alpA, alpB, ureE, and ureF genes. Furthermore, T. chebula demonstrated its effectiveness in inhibiting the H. pylori-induced inflammatory response by regulating the inflammasome signaling and ER-stress pathway. Moreover, the study discovered that chebulagic acid has anti-HP activity and inhibits the expression of Cag A protein. CONCLUSIONS T. chebula acts as a natural remedy for combating H. pylori infection. Its ability to disrupt the bacterial structure, inhibit key proteins, regulate inflammatory pathways, and the presence of chebulagic acid contribute to its anti-H. pylori activity.
Collapse
Affiliation(s)
- Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Heng-Rui Liu
- Regenerative Medicine Research Center, Future Homo Sapiens Institute of Regenerative Medicine Co., Ltd, Guangzhou, China.
| | - Xiao-Yan Shi
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yuan-Jing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Jun-Wei Jia
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Hui Li
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Zhi-Xiang Zhu
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Yan-Hua Wang
- International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, Shandong, China.
| | - Bing-Mei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yu-Qian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Mei-Yun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Wei-Xing Zhu
- Qingyuan Hospital' of Traditional Chinese Medicine, Qingyuan, 511500, Guangdong, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Gui-Min Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
12
|
Chen P, Chen M, Peng C, Yan J, Shen X, Zhang W, Yuan Y, Gan G, Luo X, Zhu W, Yao M. In vitro anti-bactrical activity and its preliminary mechanism of action of the non-medicinal parts of Sanguisorba officinalis L. against Helicobacter pylori infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116981. [PMID: 37574016 DOI: 10.1016/j.jep.2023.116981] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguisorba officinalis L. (S. officinalis L.), known as Di Yu (DY) in Traditional Chinese Medicine (TCM), are used to treat burns, vomiting of blood, asthma, intestinal infections, and dermatitis. It has been reported that the root of DY has a significant inhibitory effect on Helicobacter pylori (H. pylori). However, there is currently little research on the composition analysis and anti-H. pylori infection properties of the non-medicinal parts of DY, such as its stems, leaves, and flowers. AIM OF STUDY The commonly used eradication therapies for H. pylori infection are antibiotic-based therapies. With the increasing antibiotic resistance of H. pylori, it is urgent to find effective alternative therapies. To find alternative therapies and increase the utilization of DY, this study aims to investigate the phytochemistry profile, in vitro anti-H. pylori activity, and preliminary antibacterial mechanism of the non-medicinal parts of DY. MATERIALS AND METHODS The non-medicinal parts of DY extracts were obtained by using hot water reflux method. The chemical composition of these extracts was analyzed using colorimetric method, high-performance liquid chromatography (HPLC), and ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). The in vitro anti-H. pylori activity was investigated using broth microdilution method, checkerboard dilution method, time-kill curve, time-inhibition curve, scanning electron microscopy, and transmission electron microscopy. Transcriptional sequencing technology was used to study the effect of DY stems and flowers on the gene expression of H. pylori and explore possible antibacterial mechanisms. RESULTS The non-medicinal parts of DY contain abundant phytochemicals, such as total phenols and total flavonoids, and possess strong inhibitory and bactericidal activity against both standard and clinical strains of H. pylori in vitro. The MIC was 80-1280 μg/mL and the MBC was 80-2560 μg/mL, and the strength of the antibacterial effects was dependent on the concentration of phytochemicals (total polyphenols, gallic acid and ellagic acid). In addition, the combination of non-medicinal parts of DY with antibiotics, such as amoxicillin, metronidazole, levofloxacin, and clarithromycin, did not result in any antagonistic effects. All of them could disrupt the morphology, internal microscopic and cell wall structures of H. pylori thereby acting as an inhibitor. The mechanism of action was found to be the disruption of H. pylori morphology, internal microstructure, and cell wall. Transcriptomic analysis showed that the non-medicinal parts of DY significantly regulated the gene expression of H. pylori, especially the metabolic pathway. CONCLUSIONS This study analyzed the chemical composition of the non-medicinal parts of DY and confirmed its inhibitory and bactericidal activities against H. pylori, both standard and clinical strains. Additional, the mechanism of inhibition involves disrupting the structure of H. pylori cells, altering gene expression, and interfering with bacterial metabolic pathways. This study provides a reference for further resource utilization and the development of H. pylori drugs using the non-medicinal parts of DY.
Collapse
Affiliation(s)
- Pengting Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Jiahui Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuemei Yuan
- School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519080, China.
| | - Guoxing Gan
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, China.
| | - Xiaojun Luo
- Lianzhou Hospital of Traditional Chinese Medicine, Qingyuan 513400, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Wang X, Chen L, Chang L, He Y, He T, Wang R, Wei S, Jing M, Zhou X, Li H, Zhao Y. Mechanism of Wuzhuyu decoction on alcohol-induced gastric ulcers using integrated network analysis and metabolomics. Front Pharmacol 2024; 14:1308995. [PMID: 38259271 PMCID: PMC10800891 DOI: 10.3389/fphar.2023.1308995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Gastric ulcers (GUs) are prevalent digestive disorders worldwide. Wuzhuyu Decoction (WZYT) is a traditional Chinese medicine that has been employed for centuries to alleviate digestive ailments like indigestion and vomiting. This study aims to explore the potential effects and underlying mechanisms of WZYT on alcohol induced gastric ulcer treatment. Methods: We employed macroscopic assessment to evaluate the gastric ulcer index (UI), while the enzyme-linked immunosorbent assay (ELISA) was utilized for detecting biochemical indicators. Pathological tissue analysis involved hematoxylin-eosin (H&E) staining and Periodic Acid-Schiff (PAS) staining to assess gastric tissue damage. Additionally, the integration of network analysis and metabolomics facilitated the prediction of potential targets. Validation was conducted using Western blotting. Results: The research revealed that WZYT treatment significantly reduced the gastric ulcer index (UI) and regulation of alcohol-induced biochemical indicators levels. Additionally, improvements were observed in pathological tissue. Network analysis results indicated that 62 compounds contained in WZYT modulate alcohol-induced gastric ulcers by regulating 183 genes. The serum metabolomics indicated significant changes in the content of 19 metabolites after WZYT treatment. Two pivotal targets, heme oxygenase 1 (HMOX1) and albumin (ALB), are believed to assume a significant role in the treatment of gastric ulcers by the construction of "compounds-target-metabolite" networks. Western blot analysis confirmed that WZYT has the capacity to elevate the expression of HMOX1 and ALB targets. Conclusion: The integration of network analysis and metabolomics provides a scientific basis to propel the clinical use of WZYT for GUs. Our study provides a theoretical basis for the use of Wuzhuyu decoction in the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Chang
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Southern Medical University, Guangzhou, China
| | - Yong He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haotian Li
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Chen L, Wei S, He Y, Wang X, He T, Zhang A, Jing M, Li H, Wang R, Zhao Y. Treatment of Chronic Gastritis with Traditional Chinese Medicine: Pharmacological Activities and Mechanisms. Pharmaceuticals (Basel) 2023; 16:1308. [PMID: 37765116 PMCID: PMC10537303 DOI: 10.3390/ph16091308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic gastritis (CG) is a common clinical digestive system disease, which is not easyily cured and is prone to recurrence. Traditional Chinese medicine (TCM) plays a significant role in the treatment of CG and has attracted increasing attention for clinical applications. In recent years, a large number of reports have shown that TCM has good therapeutic effect on CG. The aim of this paper is to investigate the pharmacological activities and mechanism of action of TCM in the treatment of CAG. Therefore, by searching the databases of Pubmed, China National Knowledge Infrastructure, Wanfang, and Baidu academic databases, this paper has summarized the molecular mechanisms of TCM in improving CG. The results show that the improvement of GC by TCM is closely related to a variety of molecular mechanisms, including the inhibition of Helicobacter pylori (Hp) infection, alleviation of oxidative stress, improvement of gastric function, repair of gastric mucosa, inhibition of inflammatory response, and apoptosis. More importantly, IRF8-IFN-γ, IL-4-STAT6, Hedgehog, pERK1/2, MAPK, PI3K-Akt, NF-κB, TNFR-c-Src-ERK1/2-c-Fos, Nrf2/HO-1, and HIF-1α/VEGF signaling pathways are considered as important molecular targets for TCM in the treatment of GC. These important findings will provide a direction and a basis for further exploring the pathogenesis of GC and tapping the potential of TCM in clinical treatment. This review also puts forward a bright prospect for future research of TCM in the treatment of CG.
Collapse
Affiliation(s)
- Lisheng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
- Department of Pharmacy, General Hospital of PLA, Beijing 100039, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Yong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Xin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Tingting He
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Aozhe Zhang
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Manyi Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Haotian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center, General Hospital of PLA, Beijing 100039, China; (T.H.); (A.Z.); (R.W.)
| | - Yanling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.C.); (Y.H.); (X.W.); (M.J.); (H.L.)
- Department of Pharmacy, General Hospital of PLA, Beijing 100039, China
| |
Collapse
|
15
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
16
|
Mi SC, Wu LY, Xu ZJ, Zheng LY, Luo JW. Effect of modified ShengYangYiwei decoction on painless gastroscopy and gastrointestinal and immune function in gastric cancer patients. World J Gastrointest Endosc 2023; 15:376-385. [PMID: 37274559 PMCID: PMC10236977 DOI: 10.4253/wjge.v15.i5.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Painless gastroenteroscopy is a widely developed diagnostic and treatment technology in clinical practice. It is of great significance in the clinical diagnosis, treatment, follow-up review and other aspects of gastric cancer patients. The application of anesthesia techniques during manipulation can be effective in reducing patient fear and discomfort. In clinical work, the adverse drug reactions of anesthesia regimens and the risk of serious adverse drug reactions are increased with the increase in propofol application dose application dose; the application of opioid drugs often causes gastrointestinal reactions, such as nausea, vomiting and delayed gastrointestinal function recovery, after examination. These adverse effects can seriously affect the quality of life of patients.
AIM To observe the effect of modified ShengYangYiwei decoction on gastrointestinal function, related complications and immune function in patients with gastric cancer during and after painless gastroscopy.
METHODS A total of 106 patients with gastric cancer, who were selected from January 2022 to September 2022 in Xiamen Traditional Chinese Medicine Hospital for painless gastroscopy, were randomly divided into a treatment group (n = 56) and a control group (n = 50). Before the examination, all patients fasted for 8 h, provided their health education, and confirmed if there were contraindications to anesthesia and gastroscopy. During the examination, the patients were placed in the left decubitus position, the patients were given oxygen through a nasal catheter (6 L/min), the welling needle was opened for the venous channel, and a multifunction detector was connected for monitoring electrocardiogram, oxygen saturation, blood pressure, etc. Naporphl and propofol propofol protocols were used for routine anesthesia. Before anesthesia administration, the patients underwent several deep breathing exercises, received intravenous nalbuphine [0.nalbuphine (0.025 mg/kg)], followed by intravenous propofol [1.propofol (1.5 mg/kg)] until the palpebral reflex disappeared, and after no response, gastroscopy was performed. If palpebral reflex disappeared, and after no response, gastroscopy was performed. If any patient developed movement, frowning, or hemodynamic changes during the operation (heart rate changes during the operation (heart rate increased to > 20 beats/min, systolic blood pressure increased to > 20% of the base value), additional propofol [0.propofol (0.5 mg/kg)] was added until the patient was sedated again. The patients in the treatment group began to take the preventive intervention of Modified ShengYangYiwei decoction one week before the examination, while the patients in the control group received routine gastrointestinal endoscopy. The patients in the two groups were examined by conventional painless gastroscopy, and the characteristics of the painless gastroscopies of the patients in the two groups were recorded and compared. These characteristics included the total dosage of propofol during the examination, the incidence of complications during the operation, the time of patients' awakening, the time of independent activities, and the gastrointestinal function of the patients after examination, such as the incidence of reactions such as malignant vomiting, abdominal distension and abdominal pain, as well as the differences in the levels of various immunological indicators and inflammatory factors before anesthesia induction (T0), after conscious extubation (T1) and 24 h after surgery (T2).
RESULTS There was no difference in the patients’ general information, American Society of Anesthesiologist classification or operation time between the two groups before treatment. In terms of painless gastroscopy, the total dosage of propofol in the treatment group was lower than that in the control group (P < 0.05), and the time of awakening and autonomous activity was significantly faster than that in the control group (P < 0.05). During the examination, the incidence of hypoxemia, hypotension and hiccups in the treatment group was significantly lower than that in the control group (P < 0.01). In terms of gastrointestinal function, the incidences of nausea, vomiting, abdominal distension and abdominal pain in the treatment group after examination were significantly lower than those in the control group (P < 0.01). In terms of immune function, in both groups, the number of CD4+ and CD8+ cells decreased significantly (P < 0.05), and the number of natural killer cells increased significantly (P < 0.05) at T1 and T2, compared with T0. The number of CD4+ and CD8+ cells in the treatment group at the T1 and T2 time points was higher than that in the control group (P < 0.05), while the number of natural killer cells was lower than that in the control group (P < 0.05). In terms of inflammatory factors, compared with T0, the levels of interleukin (IL) -6 and tumor necrosis factor-alpha in patients in the two groups at T1 and T2 increased significantly and then decreased (P < 0.05). The level of IL-6 at T1 and T2 in the treatment group was lower than that in the control group (P < 0.05).
CONCLUSION The preoperative use of modified ShengYangYiwei decoction can optimize the anesthesia program during painless gastroscopy, improve the gastrointestinal function of patients after the operation, reduce the occurrence of examination-related complications.
Collapse
Affiliation(s)
- Sui-Cai Mi
- Department of Oncology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361000, Fujian Province, China
| | - Ling-Yan Wu
- Department of Nephropathy, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361000, Fujian Province, China
| | - Zheng-Jin Xu
- Department of Nephropathy, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361000, Fujian Province, China
| | - Li-Yan Zheng
- Department of Anesthesiology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361000, Fujian Province, China
| | - Jian-Wen Luo
- Department of Oncology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361000, Fujian Province, China
| |
Collapse
|
17
|
Tang Q, Ma Z, Tang X, Liu Y, Wu H, Peng Y, Jiao B, Wang R, Ye X, Ma H, Li X. Coptisine inhibits Helicobacter pylori and reduces the expression of CagA to alleviate host inflammation in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116618. [PMID: 37164257 DOI: 10.1016/j.jep.2023.116618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helicobacter pylori (H. pylori) is a major pathogen colonized in the human stomach and is implicated in gastritis, peptic ulcer, and gastric carcinoma. Antibiotics are useful for eradicating H. pylori but failed for drug resistance, making it urgent to develop effective and safe drugs. Rhizoma Coptidis was reported as one of the most effective Chinese medicines to treat H. pylori-related gastrointestinal diseases, while the precise antimicrobial mechanism remains unclear. Thus, it is of great significance to study the antimicrobial ingredients and corresponding mechanisms of Rhizoma Coptidis. AIM OF THE STUDY To search for the most effective alkaloid against H. pylori in Rhizoma Coptidis and illustrate the probable mechanisms. MATERIALS AND METHODS Five main alkaloids in Rhizoma Coptidis were isolated. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested to determine the most effective one. Bacterial growth experiments, Annexin V-FITC/PI staining, TUNEL staining, and transmission electron microscopy (TEM) were performed to further study the anti-H. pylori activity of coptisine (Cop). The in vivo effect of Cop on H. pylori eradication rate and H. pylori-induced inflammation was investigated in mice. Transcriptomics was used to understand the underlying mechanism of eradicating H. pylori and reducing host inflammation. Western blot, RT-PCR, and ELISA experiments were utilized and confirmed that cagA was one of the targets of Cop. RESULTS According to the MIC and MBC, Cop was the most effective alkaloid against H. pylori, especially with no drug resistance developed. In vitro experiments showed that Cop inhibited H. pylori by inducing DNA fragmentation, phosphatidylserine exposure, and membrane damage. Cop (150 mg/kg/day) effectively eradicated H. pylori in mice and reduced the levels of IL-2 and IL-6 to relieve gastric inflammation. Transcriptomic analysis revealed that virulence factor cagA was one of the hub genes associated with the inflammation-improving effect of Cop. That is, Cop could decrease the expression of CagA and subsequently reduce the translocation of CagA to gastric epithelial cells, thereby improving the morphology of hummingbird-like phenotype induced by CagA and alleviating inflammation. CONCLUSIONS Cop is the most effective alkaloid in Rhizoma Coptidis and might act through multiple mechanisms for H. pylori eradication along with reducing the expression of CagA to alleviate inflammation.
Collapse
Affiliation(s)
- Qin Tang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhengcai Ma
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiang Tang
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yan Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Huimin Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yu Peng
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Baihua Jiao
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Srisuphanunt M, Wilairatana P, Kooltheat N, Duangchan T, Katzenmeier G, Rose JB. Molecular Mechanisms of Antibiotic Resistance and Novel Treatment Strategies for Helicobacter pylori Infections. Trop Med Infect Dis 2023; 8:163. [PMID: 36977164 PMCID: PMC10057134 DOI: 10.3390/tropicalmed8030163] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Helicobacter pylori infects approximately 50% of the world's population and is considered the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma. Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication therapies and the development of novel and improved regimens for treatment is urgently required. Substantial progress has been made over the past few years in the identification of molecular mechanisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract strain resistance and to avoid the use of ineffective antibiotics. These involve molecular testing methods, improved salvage therapies, and the discovery of novel and potent antimicrobial compounds. High rates of prevalence and gastric cancer are currently observed in Asian countries, including Japan, China, Korea, and Taiwan, where concomitantly intensive research efforts were initiated to explore advanced eradication regimens aimed at reducing the risk of gastric cancer. In this review, we present an overview of the known molecular mechanisms of antibiotic resistance and discuss recent intervention strategies for H. pylori diseases, with a view of the research progress in Asian countries.
Collapse
Affiliation(s)
- Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Excellent Center for Dengue and Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Thitinat Duangchan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Gerd Katzenmeier
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Joan B. Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
19
|
Yu Z, Sheng WD, Yin X, Bin Y. Coptis, Pinellia, and Scutellaria as a promising new drug combination for treatment of Helicobacter pylori infection. World J Clin Cases 2022; 10:12500-12514. [PMID: 36579091 PMCID: PMC9791531 DOI: 10.12998/wjcc.v10.i34.12500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the most important infectious agent and plays an important role in the progression of chronic gastritis and the development of gastric cancer.
AIM To identify efficient therapeutic agents or strategies that can treat H. pylori infection.
METHODS We performed literature analysis, experimental validation, and network pharmacology. First, traditional Chinese medicine (TCM) prescriptions for the treatment of H. pylori infection were obtained from the China National Knowledge Infrastructure, China Biology Medicine, China Science and Technology Journal Database, and WanFang databases. In addition, we conducted a relevant search by Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). Next, we used TCM Inheritance Support System V2.5 to identify core drug combinations in the TCM prescriptions. Then, an H. pylori-associated chronic mouse model of gastritis was established. The antibacterial properties and anti-inflammatory potential of the core drug combination were evaluated by the rapid urease test, modified Warthin-Starry silver staining, histopathological analysis, and enzyme linked immunosorbent assay. Finally, the active compounds, hub targets, and potential signaling pathways associated with the core drug combination were analyzed by network pharmacology.
RESULTS The TCM treatment of H. pylori was mainly based on reinforcing the healthy Qi and eliminating pathogenic factors by simultaneously applying pungent dispersing, bitter descending, cold and warm drugs. The combination of Coptis, Pinellia, and Scutellaria (CPS) was identified as the core drug combination from 207 prescriptions and 168 herbs. This drug combination eradicated H. pylori, alleviated the gastric pathology induced by H. pylori infection, and reduced the expression levels of tumor necrosis factor-α (P = 0.024) and interleukin-1β (P = 0.001). Moreover, a total of 35 compounds and 2807 targets of CPS were identified using online databases. Nine key compounds (tenaxin I, neobaicalein, norwogonin, skullcapflavone II, baicalein, 5,8,2'-trihydroxy-7-methoxyflavone, acacetin, panicolin, and wogonin) and nine hub target proteins (EGFR, PTGS2, STAT3, MAPK3, MAPK8, HSP90AA1, MAPK1, MMP9, and MTOR) were further explored. Seventy-seven signaling pathways were correlated with H. pylori-induced inflammation and carcinogenesis.
CONCLUSION In summary, we showed that CPS is the core drug combination for treating H. pylori infection. Animal experiments demonstrated that CPS has bacteriostatic properties and can reduce the release of inflammatory cytokines in the gastric mucosa. Network pharmacology predictions further revealed that CPS showed complex chemical compositions with multi-target and multi-pathway regulatory mechanisms. Although the results derived from network pharmacology are not necessarily comprehensive, they still expand our understanding of CPS for treating H. pylori infection.
Collapse
Affiliation(s)
- Zhang Yu
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Wu-Dong Sheng
- Department of Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xu Yin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Yu Bin
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
20
|
Zhao Q, Wang WJ, Zhou SP, Su J, Sun H, Zhai JB, Hu YH. Jinghua Weikang capsule for helicobacter pylori eradication: A systematic review and meta-analysis with trial sequential analysis. Front Pharmacol 2022; 13:959184. [PMID: 36225593 PMCID: PMC9549166 DOI: 10.3389/fphar.2022.959184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Helicobacter pylori (H. pylori) infection is one of the most common chronic bacterial infections worldwide. The resistance of H. pylori to antibiotics may increase the risk of treatment failure. Complementary and alternative regimens are still needed. This study aimed to critically assess the efficacy and safety of Jinghua Weikang capsule (JWC) for H. pylori eradication. Materials and methods: PubMed, Embase, Web of Science, Cochrane library, China National Knowledge Infrastructure, Wanfang Digital Periodicals, and Chinese Science and Technology Periodicals database were searched from inception to April 2022. Randomized controlled trials (RCTs) comparing a combination of JWC and conventional treatments with conventional treatments alone or combined with a placebo for H. pylori eradication were considered for inclusion. The primary outcome was H. pylori eradication rate. The meta-analysis and trial sequential analysis (TSA) were conducted where possible. Results: A total of 34 studies were included in the statistical analysis. A pooled result showed that JWC with the duration of 2 weeks combined with the triple/quadruple therapy could significantly increase the H. pylori eradication rate compared with the triple/quadruple therapy alone (RR: 1.13, 95% CI: 1.05 to 1.21, p = 0.0008). However, the evidence of benefit was not confirmed by TSA. Another pooled result showed that JWC with the duration of 4 weeks combined with the triple/quadruple therapy could significantly increase the H. pylori eradication rate compared with the triple/quadruple therapy alone (RR: 1.21, 95% CI: 1.15 to 1.27, p < 0.00001). The evidence of benefit was confirmed by TSA. There were no statistically significant differences in the incidence of adverse reactions between the two groups. Conclusion: The present study suggests that JWC with the duration of 4 weeks can significantly improve the H. pylori eradication rate and should be considered as a complementary treatment to conventional regimens for H. pylori eradication. However, more high-quality RCTs are still needed to confirm these findings.
Collapse
Affiliation(s)
- Qian Zhao
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| | - Wen-jia Wang
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| | - Shui-ping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co, Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - Jing Su
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co, Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - Jing-bo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-hui Hu
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| |
Collapse
|
21
|
The Origin and Development of Piji Pills: An Ancient Prescription of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9090697. [PMID: 36133786 PMCID: PMC9484890 DOI: 10.1155/2022/9090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Objective Ancient prescriptions of traditional Chinese medicine (TCM) are an important source for innovative drug research and development, which has garnered increasing attention in recent years. Piji Pills, an ancient TCM prescription, has a long history and remarkable clinical efficacy in the treatment of digestive disorders. Thus, the purpose of this study was to explore the origin and development of Piji Pills and to discuss the potential future direction of an ancient TCM prescription. Method We analyzed the origin and development of the Piji Pills by reviewing literature records and their evolution in ancient books. We used a full-text database covering 2,090 TCM ancient books and implemented the full-text retrieval function based on Ulysses software. A full-text search was conducted using the keyword “Piji Pills” (“脾积丸” in Chinese). The results generated 128 pieces of literature from 35 ancient TCM books. In order to identify pertinent sections from the generated results, the results were proofread by two independent authors (Fudong Liu and Xiaochen Jiang) who had sufficient experience concerning ancient books. The developmental process of the Piji Pills was divided into early, late, and modern times. With the approach of statistical methods and chronological description, we manually searched, indexed, and transformed 2,090 ancient TCM books. Result From the time Piji Pills were first proposed, the records in ancient books became increasingly detailed, providing an in-depth discussion of their composition, dosage, and action mechanisms. In modern times, the research on key drugs found in Piji Pills has made a great contribution to clinical practice. However, the compound research on Piji Pills is still relatively superficial and requires further in-depth study. Conclusions In this study, statistical methods were used to chronologically clarify the developmental process of Piji Pills. We found that the Piji Pills were widely used and had a significant advantage in the treatment of digestive system diseases. In-depth knowledge mining of ancient books could potentially promote the theoretical innovation of TCM and the research of new drugs.
Collapse
|
22
|
Chen HF, Gong Y, Huang Z, Zhao G, Chen ZM, Zen YM, Li HZ, Hu YL. Efficacy and safety of Chinese herbal medicine Qirui Weishu capsule in treating chronic non-atrophic gastritis: A multicentre, double-blind, randomized controlled clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115341. [PMID: 35551978 DOI: 10.1016/j.jep.2022.115341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiruiWeishu capsule is an herbal preparation from a herbal formula prescribed by an experienced doctor at Guang'anmen Hospital of China Academy of Chinese Medical Sciences. It has been used clinically for more than 30 years. Abdominal pain, distension, and nausea are common symptoms of chronic non-atrophic gastritis with erosion dampness and heat stasis syndrome, and this herbal medicine has been used to treat them. AIM OF THE STUDY To verify the clinical efficacy and safety of QiruiWeishu capsule in the treatment of chronic non-atrophic gastritis with damp-heat stasis syndrome. MATERIALS AND METHODS This study was a multicenter randomized double-blind clinical trial with positive herbal drug SanjiuWeitai capsule as control and superiority test of main efficacy. A total of 477 subjects with chronic non-atrophic gastritis with erosion diagnosed by gastroscopy and pathological biopsy were randomly divided into QiruiWeishu capsule and SanjiuWeitai groups respectively in a ratio of 3:1. During the trial, subjects were required to complete medication for 28 days. The primary outcome was the disappearance rate of epigastric pain from baseline to 4weeks. At baseline, treatment at 1, 2, and 4 weeks, and follow-up at 8 and 16 weeks, the epigastric pain and traditional Chinese medicine (TCM) symptom scores were evaluated; gastroscopy, histopathology, and the helicobacter pylori test were evaluated at baseline and after 4 weeks of treatment. The safety assessment included blood routine, liver and kidney function, coagulation of laboratory tests, and electrocardiogram (ECG). RESULTS Both groups of subjects had a high level of medication adherence (defined as treatment completion for over 80%) (346/357, 96.9% in Qirui Weishu group vs 118/120, 98.3% in Sanjiu Weitai group; p > 0.05). The QiruiWeishu capsule was significantly better than SanjiuWeitai capsule in disappearance rate of epigastric pain (64.2%, 229/357vs 46.7%, 56/120; p < 0.001),especially subgroupsubjects with moderate epigastric pain (65.0%, 89/137 vs 30.4%, 14/46; p < 0.001), grade1 erythema (67.7%, 149/220 vs 51.9%, 42/81; p = 0.011) and grade 2 erythema (57.6%, 70/121 vs37.1%, 13/35; p = 0.050) of gastroscopy, grade 2 erosion (66.7%, 118/177 vs43.9%, 25/57; p = 0.002) of gastroscopy and Helicobacter pylori negative (65.4%, 155/237 vs 42.7%, 35/82; p < 0.001) at baseline. For the scores of TCM symptoms in QiruiWeishu group were significantly lower than those in SanjiuWeitai group after 28 days of treatment (p = 0.002). The number and incidence of adverse events related to the trial drug were 14/355 (3.9%) in QiruiWeishu group, 6/118 (5.1%) in SanjiuWeitai group (p > 0.05). No serious adverse reactions occurred in the two groups. According to laboratory tests and ECG, there was no discernible effect on heart, liver, kidney, or blood coagulation function. CONCLUSION Qirui Weishu capsule appears to be more effective in terms of symptoms than the SanjiuWeitai capsule, and its use is both safe and effective for the treatment of chronic non-atrophic gastritis. A further randomized, double-blind, placebo-control trial is warranted to verify its benefit.
Collapse
Affiliation(s)
- Hua-Fang Chen
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, PR China.
| | - Yang Gong
- General Hospital of the PLA Northern Theater Command, Liaoning, 110016, PR China.
| | - Zhijun Huang
- Children's Drug Research Institute of Jianmin Group, Hubei, 430050, PR China.
| | - Gang Zhao
- Children's Drug Research Institute of Jianmin Group, Hubei, 430050, PR China.
| | - Zhi-Min Chen
- Ningbo Hospital of Traditional Chinese Medicine, Zhejiang, 315010, PR China.
| | - Yao-Ming Zen
- Wenzhou Hospital of Traditional Chinese Medicine, Zhejiang, 325000, PR China.
| | - Hui-Zhen Li
- The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300150, PR China.
| | - Yun-Lian Hu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei, 430060, PR China.
| |
Collapse
|
23
|
Evaluation of Susceptibility of the Human Pathogen Helicobacter pylori to the Antibiotic Capreomycin. ScientificWorldJournal 2022; 2022:8924023. [PMID: 35958801 PMCID: PMC9357814 DOI: 10.1155/2022/8924023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Helicobacter pylori infection causes gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and gastric cancer and can also promote thrombosis. It is estimated that approximately 4.5 billion individuals are infected, thus rendering H. pylori the most prevalent microbial pathogen. Currently established regimes for antibiotic treatment are massively challenged by increasing drug resistance and the development of novel antimicrobial therapies is urgently required. The antibiotic capreomycin is clinically used against multiple drug-resistant strains of Mycobacterium tuberculosis. It targets the complex between TlyA, a hemolysin- and RNA-binding protein, and the bacterial rRNA. In this study we have explored the possible antibacterial effects of capreomycin against several strains of H. pylori and found only moderate activity which was comparable to metronidazole-resistant strains. Molecular docking of capreomycin to TlyA proteins from H. pylori and M. tuberculosis identified several residues within TlyA which interact with the drug; however, binding affinities of H. pylori– TlyA for capreomycin appear to be higher than those of Mycobacterium– TlyA. The data suggest that capreomycin may warrant further investigations into its potential use as antibiotic against H. pylori.
Collapse
|
24
|
Qu P, Liu X, Xia X, Xie X, Luo J, Cheng S, Chi J, Liu P, Li H, Zhao W, Yang H, Xu C. Saccharomyces boulardii Allows Partial Patients to Avoid Reusing Bismuth Quadruple for Helicobacter pylori Rescue Therapy: A Single-Center Randomized Controlled Study. Front Cell Infect Microbiol 2022; 12:903002. [PMID: 35880079 PMCID: PMC9307992 DOI: 10.3389/fcimb.2022.903002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background The increasing rate of drug resistance often leads to Helicobacter pylori (H. pylori) eradication failure and needs the rescue therapy. Thus, the exploration of new rescue therapeutic regimens is important. The present study was designed to test the beneficial effects of Saccharomyces boulardii (S.boulardii) prior to H. pylori rescue therapy basing on bismuth quadruple. Methods One hundred H. pylori-infected patients were randomly divided into two groups: study group and control group. Patients in the study group (n=50) underwent two-stages therapy: patients started with S.boulardii monotherapy for 2 weeks, and then tested for H. pylori infection after resting for 4 weeks without any therapy, patients who were still positive for H. pylori continued with bismuth quadruple eradication therapy. For the control group (n=50), all patients were observed and were not treated with any gastric drugs or antibiotics for 6 weeks, then those who were still positive for H. pylori received the same eradication therapy as the study group. Eradication rate, adverse events and the cost-effectiveness of two regimens were analyzed in this study. Results The H.pylori eradication rate of ITT (intent-to-treat) analysis and PP (per-protocol) analysis in the first phase of treatment were significantly higher in the study group than the control groups respectively (28.0% vs 2.0%, p<0.001 and 30.4% vs 2.1% p<0.001). For the total treatment effect, there were no significant differences in the eradication rate of ITT analysis (78.0% vs 80.0%) or PP analysis (90.7% vs 88.9%) between the study group and the control group. The cost‐effectiveness ratio of the study group was slightly higher than that of the control group (8.95 vs 8.55). There were two patients in the study group and four patients in the control group with the adverse events, respectively. There was no significant difference on the incidence of adverse events between the two groups (p=0.68). Conclusion S.boulardii may serve as a beneficial treatment option before H. pylori rescue therapy since it callowed partial patients to avoid reusing bismuth quadruple.
Collapse
Affiliation(s)
- Peng Qu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiujuan Xia
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoran Xie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ju Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sha Cheng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingshu Chi
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huan Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wenfang Zhao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Huihao Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Uncontrollable Inflammation and Tumour, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Canxia Xu,
| |
Collapse
|
25
|
Meng F, Tang Q, Chu T, Li X, Lin Y, Song X, Chen W. TCMPG: an integrative database for traditional Chinese medicine plant genomes. HORTICULTURE RESEARCH 2022; 9:uhac060. [PMID: 35591924 PMCID: PMC9113410 DOI: 10.1093/hr/uhac060] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/25/2022] [Indexed: 05/12/2023]
Abstract
Because of their great therapeutic and economic value, medicinal plants have attracted increasing scientific attention. With the rapid development of high-throughput sequencing technology, the genomes of many medicinal plants have been sequenced. Storing and analyzing the increasing volume of genomic data has become an urgent task. To solve this challenge, we have proposed the Traditional Chinese Medicine Plant Genome database (TCMPG, http://cbcb.cdutcm.edu.cn/TCMPG/), an integrative database for storing the scattered genomes of medicinal plants. TCMPG currently includes 160 medicinal plants, 195 corresponding genomes, and 255 herbal medicines. Detailed information on plant species, genomes, and herbal medicines is also integrated into TCMPG. Popular genomic analysis tools are embedded in TCMPG to facilitate the systematic analysis of medicinal plants. These include BLAST for identifying orthologs from different plants, SSR Finder for identifying simple sequence repeats, JBrowse for browsing genomes, Synteny Viewer for displaying syntenic blocks between two genomes, and HmmSearch for identifying protein domains. TCMPG will be continuously updated by integrating new data and tools for comparative and functional genomic analysis.
Collapse
Affiliation(s)
- Fanbo Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianzhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianhai Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yue Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Wei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
26
|
Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit-risk approach? World J Gastroenterol 2022; 28:766-774. [PMID: 35317277 PMCID: PMC8891730 DOI: 10.3748/wjg.v28.i7.766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, H. pylori can also be regarded as a commensal symbiont. Unlike other pathogenic/ opportunistic bacteria, H. pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization. H. pylori may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of H. pylori can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis. Overall, studies have shown that gastric Actinobacteria decrease after H. pylori eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up. Various gastric mucosal bacteria (Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, Streptococcus, Rhodococcus, and Lactobacillus) may contribute to precancerous gastric lesions and cancer itself after H. pylori eradication. H. pylori eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after H. pylori eradication. Furthermore, H. pylori eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the decision to eradicate H. pylori should be based on an assessment of the benefit-risk ratio for the individual patient. Thus, the current guidelines based on the unconditional "test-and-treat" strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (e.g., butyrate + inulin) should be considered to decrease the negative effects of eradication.
Collapse
Affiliation(s)
- Stanislav Sitkin
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Leonid Lazebnik
- Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Elena Avalueva
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Svetlana Kononova
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Timur Vakhitov
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
27
|
Huang Q, Jia X, Chu Y, Zhang X, Ye H. Helicobacter pylori Infection in Geriatric Patients: Current Situation and Treatment Regimens. Front Med (Lausanne) 2021; 8:713908. [PMID: 34660627 PMCID: PMC8514670 DOI: 10.3389/fmed.2021.713908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) has so far infected more than half the global population. It is the most important and controllable risk factor for gastric cancer. The elderly, who are at a higher incidence of the infection, are also commonly found to develop antibiotic resistance. The symptoms, diagnosis, clinical features (of gastric or extra-digestive diseases), and treatment of H. pylori infection in the elderly, are different from that in the non-elderly. Health conditions, including comorbidities and combined medication have limited the use of regular therapies in elderly patients. However, they can still benefit from eradication therapy, thus preventing gastric mucosal lesions and gastric cancer. In addition, new approaches, such as dual therapy and complementary therapy, have the potential to treat older patients with H. pylori infection.
Collapse
Affiliation(s)
| | | | | | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
28
|
Li B, Su Y, Xiang N, Qin B, Li G, Wan T, Liu X, Wang D, Jiang C, Wen L, Feng QS. Comparative serum microRNA array analysis of the spleen-stomach dampness-heat syndrome in different diseases: Chronic hepatitis B and chronic gastritis. Anat Rec (Hoboken) 2021; 304:2620-2631. [PMID: 34288535 DOI: 10.1002/ar.24690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/28/2022]
Abstract
Spleen-stomach dampness-heat syndrome (SSDHS) is the common Traditional Chinese Medicine (TCM) syndrome observed in both chronic hepatitis B (CHB) and chronic gastritis (CG). The specialized TCM prescription for CHB and CG patients with SSDHS is same, but there is limited information about the biological characteristics of this TCM syndrome. This study aimed to identify the serum miRNAs profile for the SSDHS in two different diseases in order to evaluate the miRNA-mediated biological characteristics of this TCM syndrome. We performed comparative microarray analysis of serum miRNA expression profiles in 10 CHB patients with SSDHS (SSDHS-CHB), 10 CG patients with SSDHS (SSDHS-CG), and 10 healthy controls (HC). The selected miRNAs were further validated by qRT-PCR in 13 SSDHS-CHB patients, 13 SSDHS-CG patients, and 13 HC. Moreover, bioinformatics analysis (GO and KEGG pathway enrichment analyses) was applied to identify the involved target genes and pathways for these selected miRNAs. Nine significantly differentially expressed (SDE)-miRNAs in the SSDHS-CHB group and 24 SDE-miRNAs in the SSDHS-CG group were identified, compared with the HC group (fold change >2.0 and p < .05). Among these, upregulated hsa-miR-483-3p and downregulated hsa-miR-223-3p were identified as the common SDE-miRNAs for both SSDHS-CHB and SSDHS-CG groups. Bioinformatics analysis of the common SDE-miRNA's target genes showed their involvement in the regulation of inflammation, immune response, and tumorigenesis. SSDHS-specific hsa-miR-483-3p and hsa-miR-223-3p identified in this study indicated a relevance to the underlying biological basis of SSDHS, and may provide scientific basis for the application of same TCM prescription in CHB and CG.
Collapse
Affiliation(s)
- Baixue Li
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Su
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ne Xiang
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bing Qin
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiyu Li
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingjun Wan
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cen Jiang
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan-Sheng Feng
- College of Basic Medical Sciences Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|