1
|
Zhou J, Li W, Chi X, Li D, Yang C, Duan Z. Inhibition of mmu_circ_0009303 improves metabolic dysfunction-associated steatotic liver disease by regulating lipid metabolism and oxidative stress. Endocr J 2025; 72:79-91. [PMID: 39443113 PMCID: PMC11778371 DOI: 10.1507/endocrj.ej24-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating inflammation and oxidative stress during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the underlying mechanism is unclear. This study aimed to determine the role of mmu_circ_0009303 in MASLD. We used a bioinformatics approach to identify potential targets and established an in vitro model of MASLD. Oil red O staining, cell transfection and dual-luciferase reporter assay were used to determine the role of mmu_circ_0009303. The results indicated that the mmu_circ_0009303 expression was significantly increased in the MASLD model both in vitro and in vivo and was associated with oxidative stress levels and inflammation. Moreover, bioinformatics analyses revealed that miRNA-182-5p and Foxo3 are targets of mmu_circ_0009303 and miRNA-182-5p, respectively. In the in vitro MASLD model, mmu_circ_0009303 promoted fat deposition in NCTC1469 cells, which was induced by free fatty acid (FFA) through the regulation of miRNA-182-5p/Foxo3. The expression of miRNA-182-5p and Forkhead box O3 (Foxo3) was associated with mmu_circ_0009303 expression in the liver of mice with MASLD, which was induced by a high-fat diet. Furthermore, mmu_circ_0009303 may be involved in regulating the expression of lipid metabolism-related regulatory proteins, such as CPT1A, SLC27A4, ACBD3, SREBP1, FAS, PPARα, and PPARγ. Taken together, mmu_circ_0009303 promotes oxidative stress, inflammation, and excessive fat accumulation in NCTC1469 cells induced by FFA through the regulation of miRNA-182-5p/Foxo3 and lipid metabolism-related regulatory proteins. These findings provide a potential target for the treatment of MASLD.
Collapse
Affiliation(s)
- Ju Zhou
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Wu Li
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Xiaowei Chi
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Dingchun Li
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Chunxia Yang
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Zhiwen Duan
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| |
Collapse
|
2
|
Wang X, Yang M, Zhu J, Zhou Y, Li G. Role of exosomal non‑coding RNAs in ovarian cancer (Review). Int J Mol Med 2024; 54:87. [PMID: 39129308 DOI: 10.3892/ijmm.2024.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Ovarian cancer (OC) is a common gynecological disease with a high mortality rate worldwide due to its insidious nature and undetectability at an early stage. The standard treatment, combining platinum‑based chemotherapy with cytoreductive surgery, has suboptimal results. Therefore, early diagnosis of OC is crucial. All cell types secrete extracellular vesicles, particularly exosomes. Exosomes, which contain lipids, proteins, DNA and non‑coding RNAs (ncRNAs), are novel methods of intercellular communication that participate in tumor development and progression. ncRNAs are categorized by size into long ncRNAs (lncRNAs) and small ncRNAs (sncRNAs). sncRNAs further include transfer RNAs, small nucleolar RNAs, PIWI‑interacting RNAs and microRNAs (miRNAs). miRNAs inhibit protein translation and promote messenger RNA (mRNA) cleavage to suppress gene expression. By sponging downstream miRNAs, lncRNAs and circular RNAs can regulate target gene expression, thereby weakening the interactions between miRNAs and mRNAs. Exosomes and exosomal ncRNAs, commonly present in human biological fluids, are promising biomarkers for OC. The present article aimed to review the potential role of exosomal ncRNAs in the diagnosis and prognosis of OC by summarizing the characteristics, processes, roles and isolation methods of exosomes and exosomal ncRNAs.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Miao Yang
- Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiamei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yu Zhou
- Oriental Fortune Capital Post‑Doctoral Innovation Center, Shenzhen, Guangdong 518040, P.R. China
| | - Gencui Li
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
3
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
4
|
Qin S, Wang Y, Ma C, Lv Q. Competitive endogenous network of circRNA, lncRNA, and miRNA in osteosarcoma chemoresistance. Eur J Med Res 2023; 28:354. [PMID: 37717007 PMCID: PMC10504747 DOI: 10.1186/s40001-023-01309-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/23/2023] [Indexed: 09/18/2023] Open
Abstract
Osteosarcoma is the most prevalent and fatal type of bone tumor. Despite advancements in the treatment of other cancers, overall survival rates for patients with osteosarcoma have stagnated over the past four decades Multiple-drug resistance-the capacity of cancer cells to become simultaneously resistant to multiple drugs-remains a significant obstacle to effective chemotherapy. The recent studies have shown that noncoding RNAs can regulate the expression of target genes. It has been proposed that "competing endogenous RNA" activity forms a large-scale regulatory network across the transcriptome, playing important roles in pathological conditions such as cancer. Numerous studies have highlighted that circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competitive endogenous RNAs, thereby affecting and regulating the expression of mRNAs and target genes. These circRNA/lncRNA-associated competitive endogenous RNAs are hypothesized to play significant roles in cancer initiation and progression. Noncoding RNAs (ncRNAs) play an important role in tumor resistance to chemotherapy. However, the molecular mechanisms of the lncRNA/circRNA-miRNA-mRNA competitive endogenous RNA network in drug resistance of osteosarcoma remain unclear. An in-depth study of the molecular mechanisms of drug resistance in osteosarcoma and the elucidation of effective intervention targets are of great significance for improving the overall recovery of patients with osteosarcoma. This review focuses on the molecular mechanisms underlying chemotherapy resistance in osteosarcoma in circRNA-, lncRNA-, and miRNA-mediated competitive endogenous networks.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Yuting Wang
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiaotong University, Wujin Road No. 85, Shanghai, 200080, China.
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Xincun Road No. 389, Shanghai, 200065, China.
| |
Collapse
|
5
|
Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA, Dergunov AD. Circular RNAs Variously Participate in Coronary Atherogenesis. Curr Issues Mol Biol 2023; 45:6682-6700. [PMID: 37623241 PMCID: PMC10453518 DOI: 10.3390/cimb45080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Over the past decade, numerous studies have shown that circular RNAs (circRNAs) play a significant role in coronary artery atherogenesis and other cardiovascular diseases. They belong to the class of non-coding RNAs and arise as a result of non-canonical splicing of premature RNA, which results in the formation of closed single-stranded circRNA molecules that lack 5'-end caps and 3'-end poly(A) tails. circRNAs have broad post-transcriptional regulatory activity. Acting as a sponge for miRNAs, circRNAs compete with mRNAs for binding to miRNAs, acting as competing endogenous RNAs. Numerous circRNAs are involved in the circRNA-miRNA-mRNA regulatory axes associated with the pathogenesis of cardiomyopathy, chronic heart failure, hypertension, atherosclerosis, and coronary artery disease. Recent studies have shown that сirc_0001445, circ_0000345, circ_0093887, сircSmoc1-2, and circ_0003423 are involved in the pathogenesis of coronary artery disease (CAD) with an atheroprotective effect, while circ_0002984, circ_0029589, circ_0124644, circ_0091822, and circ_0050486 possess a proatherogenic effect. With their high resistance to endonucleases, circRNAs are promising diagnostic biomarkers and therapeutic targets. This review aims to provide updated information on the involvement of atherogenesis-related circRNAs in the pathogenesis of CAD. We also discuss the main modern approaches to detecting and studying circRNA-miRNA-mRNA interactions, as well as the prospects for using circRNAs as biomarkers and therapeutic targets for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Ivan B. Filippenkov
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (M.A.V.); (I.B.F.); (S.A.L.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| |
Collapse
|
6
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wang G, Tong J, Li Y, Qiu X, Chen A, Chang C, Yu G. Overview of CircRNAs Roles and Mechanisms in Liver Fibrosis. Biomolecules 2023; 13:940. [PMID: 37371520 DOI: 10.3390/biom13060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Liver fibrosis represents the reversible pathological process with the feature of the over-accumulation of extracellular matrix (ECM) proteins within the liver, which results in the deposition of fibrotic tissues and liver dysfunction. Circular noncoding RNAs (CircRNAs) have the characteristic closed loop structures, which show high resistance to exonuclease RNase, making them far more stable and recalcitrant against degradation. CircRNAs increase target gene levels by playing the role of a microRNA (miRNA) sponge. Further, they combine with proteins or play the role of RNA scaffolds or translate proteins to modulate different biological processes. Recent studies have indicated that CircRNAs play an important role in the occurrence and progression of liver fibrosis and may be the potential diagnostic and prognostic markers for liver fibrosis. This review summarizes the CircRNAs roles and explores their underlying mechanisms, with a special focus on some of the latest research into key CircRNAs related to regulating liver fibrosis. Results in this work may inspire fruitful research directions and applications of CircRNAs in the management of liver fibrosis. Additionally, our findings lay a critical theoretical foundation for applying CircRNAs in diagnosing and treating liver fibrosis.
Collapse
Affiliation(s)
- Gaiping Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jiahui Tong
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yingle Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xianglei Qiu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Anqi Chen
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Cuifang Chang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
9
|
Ji J, Xiong C, Peng J, Zhang N, Zhang Y, Yang H, Zhu W. Circ_0068631 sponges miR-139-5p to promote the growth and metastasis of cutaneous squamous cell carcinoma by upregulating HOXB7. Skin Res Technol 2023; 29:e13248. [PMID: 36823512 PMCID: PMC10155854 DOI: 10.1111/srt.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are often dysregulated in cancers and closely related to cancer progression, including cutaneous squamous cell carcinoma (CSCC). However, the role and mechanism of circ_0068631 in CSCC progression have not been reported. METHODS The expression of circ_0068631, microRNA-139-5p (miR-139-5p), and homeobox B7 (HOXB7) was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, and colony formation assay were used to measure cell proliferation. Cell apoptosis was assessed by flow cytometry. Cell migration was detected by transwell assay. The interaction between miR-139-5p and circ_0068631 or HOXB7 was confirmed by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the function of circ_0068631 in vivo. RESULTS Circ_0068631 was upregulated in CSCC tissues and cells, and its silencing could inhibit CSCC cell proliferation and metastasis while promoting apoptosis in vitro, as well as restrain CSCC tumor growth in vivo. Circ_0068631 acted as a sponge of miR-139-5p, and miR-139-5p inhibition reversed the repressive effect of circ_0068631 knockdown on CSCC cell progression. Furthermore, HOXB7 was a target of miR-139-5p, and miR-139-5p inhibited the malignant behaviors by downregulating HOXB7 expression in CSCC cells. Further, circ_0068631 sponged miR-139-5p to regulate HOXB7 expression. CONCLUSION Circ_0068631 functioned as a novel oncogene in CSCC progression by regulating miR-139-5p/HOXB7 axis, suggesting that circ_0068631 may be a potential target for CSCC treatment. HIGHLIGHTS Circ_0068631 was overexpressed in CSCC tissues and cells. Circ_0068631 downregulation suppressed CSCC progression via miR-139-5p. Circ_0068631 regulated HOXB7 via sponging miR-139-5p.
Collapse
Affiliation(s)
- Jun Ji
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Chengcheng Xiong
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Jing Peng
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Niannian Zhang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Yan Zhang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Honghong Yang
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| | - Wenwen Zhu
- Department of DermatologyThe First College of Clinical Medical ScienceChina Three Gorges UniversityYichangChina
- Department of DermatologyYichang Central People's HospitalYichangChina
| |
Collapse
|
10
|
Li H, Liu B, Xu X, Li S, Zhang D, Liu Q. Circ_SNX27 regulates hepatocellular carcinoma development via miR-637/FGFR1 axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2832-2843. [PMID: 36029209 DOI: 10.1002/tox.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) serve as critical regulatory factors in cancer development. Nonetheless, the potential regulatory mechanism of circRNA sorting nexin 27 (circ_SNX27) in hepatocellular carcinoma (HCC) is still unknown. METHODS The circ_SNX27, microRNA-637 (miR-637), and fibroblast growth factor receptor 1 (FGFR1) levels were quantified by quantitative real-time polymerase chain reaction and western blot analysis. Next, function experiments were conducted using in vitro assays and in vivo senograft study. The relationship between miR-637 with circ_SNX27 or FGFR1 was uncovered by dual-luciferase reporter and RNA pull-down assays. RESULTS The circ_SNX27 and FGFR1 levels were up-regulated, but miR-637 content was reduced in HCC. Circ_SNX27 down-regulation inhibited HCC cell proliferation, motility, and invasion and promoted apoptosis in vitro, as well as weakened tumor growth in vivo. Circ_SNX27 served as a sponge of miR-637 to promote FGFR1 expression. MiR-637 reduction abolished the restrained effect of circ_SNX27 absence on HCC cell development. Moreover, miR-637 curbed HCC cell malignant phenotype by regulating FGFR1. CONCLUSION Circ_SNX27 contributed to HCC development via miR-637/FGFR1 axis, offering a new idea for the treatment of HCC.
Collapse
Affiliation(s)
- Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingli Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingfeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Zou Y, Meng JX, Wei XY, Gu XY, Chen C, Geng HL, Yang LH, Zhang XX, Cao HW. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection. Front Cell Infect Microbiol 2022; 12:1037586. [PMID: 36389171 PMCID: PMC9646959 DOI: 10.3389/fcimb.2022.1037586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Toxoplasmosis is an important zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii). However, the functions of circRNAs and miRNAs in response to T. gondii infection in the livers of mice at acute and chronic stages remain unknown. Here, high-throughput RNA sequencing was performed for detecting the expression of circRNAs and miRNAs in livers of mice infected with 20 T. gondii cysts at the acute and chronic stages, in order to understand the potential molecular mechanisms underlying hepatic toxoplasmosis. Overall, 265 and 97 differentially expressed (DE) circRNAs were found in livers at the acute and chronic infection stages in comparison with controls, respectively. In addition, 171 and 77 DEmiRNAs were found in livers at the acute and chronic infection stages, respectively. Functional annotation showed that some immunity-related Gene ontology terms, such as “positive regulation of cytokine production”, “regulation of T cell activation”, and “immune receptor activity”, were enriched at the two infection stages. Moreover, the pathways “Valine, leucine, and isoleucine degradation”, “Fatty acid metabolism”, and “Glycine, serine, and threonine metabolism” were involved in liver disease. Remarkably, DEcircRNA 6:124519352|124575359 was significantly correlated with DEmiRNAs mmu-miR-146a-5p and mmu-miR-150-5p in the network that was associated with liver immunity and pathogenesis of disease. This study revealed that the expression profiling of circRNAs in the livers was changed after T. gondii infection, and improved our understanding of the transcriptomic landscape of hepatic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Yang Zou
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin-Yu Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiao-Yi Gu
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Chao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Li-Hua Yang
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| | - Hong-Wei Cao
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
- *Correspondence: Li-Hua Yang, ; Xiao-Xuan Zhang, ; Hong-Wei Cao,
| |
Collapse
|
12
|
Chen H, Li Y. Circular RNA hsa_circ_0000915 promotes propranolol resistance of hemangioma stem cells in infantile haemangiomas. Hum Genomics 2022; 16:43. [PMID: 36167680 PMCID: PMC9513930 DOI: 10.1186/s40246-022-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Propranolol is a first-line clinical drug for infantile haemangiomas (IH) therapy. Nevertheless, resistance to propranolol is observed in some patients with IH. Circular RNAs (circRNAs) has been increasingly reported to act as a pivotal regulator in tumor progression. However, the underlying mechanism of circRNAs in IH remains unclear. METHODS Quantitative real-time polymerase chain reaction was performed to detect Circ_0000915, miR-890 and RNF187 expression. Protein levels were determined using western blot. CCK-8 assay was used to measure cell proliferation. Caspase-3 activity assay and flow cytometry were conducted to determine cell apoptosis. Luciferase reporter assay was carried out to assess the interaction between miR-890 and Circ_0000915 or RNF187. Chromatin immunoprecipitation assay was performed to detect the interaction between STAT3 and Circ_0000915 promoter. Biotin pull-down assay was used to detect the direct interaction between miR-890 and Circ_0000915. In vivo experiments were performed to measure tumor formation. RESULTS Here, we discovered depletion of Circ_0000915 increased propranolol sensitivity of haemangioma derived stem cells (HemSCs) both in vitro and in vivo, whereas forced expression of Circ_0000915 exhibited opposite effects. Mechanistically, Circ_0000915, transcriptionally induced by IL-6/STAT3 pathway, competed with RNF187 for the biding site in miR-890, led to upregulation of RNF187 by acting as a miR-890 "sponge". Furthermore, silence of miR-890 reversed increased propranolol sensitivity of HemSCs due to Circ_0000915 ablation. Moreover, increased Circ_0000915 and RNF187 levels were observed in IH tissues and positively associated with propranolol resistance, miR-890 exhibited an inverse expression pattern. CONCLUSION We thereby uncover the activation of IL-6/STAT3/Circ_0000915/miR-890/RNF187 axis in propranolol resistance of IH, and provide therapeutic implications for patients of IH with propranolol resistance.
Collapse
Affiliation(s)
- Hongrang Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yongsheng Li
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
13
|
Next RNA Therapeutics: The Mine of Non-Coding. Int J Mol Sci 2022; 23:ijms23137471. [PMID: 35806476 PMCID: PMC9267739 DOI: 10.3390/ijms23137471] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
The growing knowledge on several classes of non-coding RNAs (ncRNAs) and their different functional roles has aroused great interest in the scientific community. Beyond the Central Dogma of Biology, it is clearly known that not all RNAs code for protein products, and they exert a broader repertoire of biological functions. As described in this review, ncRNAs participate in gene expression regulation both at transcriptional and post-transcriptional levels and represent critical elements driving and controlling pathophysiological processes in multicellular organisms. For this reason, in recent years, a great boost was given to ncRNA-based strategies with potential therapeutic abilities, and nowadays, the use of RNA molecules is experimentally validated and actually exploited in clinics to counteract several diseases. In this review, we summarize the principal classes of therapeutic ncRNA molecules that are potentially implied in disease onset and progression, which are already used in clinics or under clinical trials, highlighting the advantages and the need for a targeted therapeutic strategy design. Furthermore, we discuss the benefits and the limits of RNA therapeutics and the ongoing development of delivery strategies to limit the off-target effects and to increase the translational application.
Collapse
|
14
|
Fu X, Sun G, Tu S, Fang K, Xiong Y, Tu Y, Zha M, Xiao T, Xiao W. Hsa_circ_0046523 Mediates an Immunosuppressive Tumor Microenvironment by Regulating MiR-148a-3p/PD-L1 Axis in Pancreatic Cancer. Front Oncol 2022; 12:877376. [PMID: 35712476 PMCID: PMC9192335 DOI: 10.3389/fonc.2022.877376] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a novel type of non-coding RNA, play an important role in the progression of tumors. However, the function and mechanism of circRNAs in regulating immune microenvironment of pancreatic cancer (PC) remain largely unclear. METHODS The effects of hsa_circ_0046523 expression on proliferation, migration and invasion of PC cells were analyzed by CCK8 and Transwell assays. Flow cytometry was used to detect the proportion of CD4+ T cells, CD8+ T cells and Tregs in peripheral blood mononuclear cells (PBMCs) after co-culture, and the apoptosis, depletion and function of CD8+ T cells. The expression levels of immunoregulatory cytokines were detected by enzyme linked immunosorbent assay (ELISA). The dual-luciferase reporter was performed to determine the interaction between hsa_circ_0046523, miR-148a-3p, and PD-L1. Rescue experiments and PD-L1 blocking experiments were employed to investigate whether hsa_circ_0046523 exerts its biological function by miR-148a-3p/PD-L1 in PC. Furthermore, an immunocompetent murine PC model was established to confirm these findings. RESULTS Hsa_circ_0046523 expression was remarkably upregulated in PC tissues and cell lines. Moreover, high expression of hsa_circ_0046523 was correlated with advanced pathological stage and poorer prognosis. Hsa_circ_0046523 overexpression promoted the proliferation, migration and invasion of PC cells in vitro. Co-culture experiments confirmed that forced expression of hsa_circ_0046523 could decrease the proportion of CD4+ and CD8+ T cells, as well as increase the proportion of Tregs among peripheral blood mononuclear cells (PBMCs). Meanwhile, hsa_circ_0046523 overexpression promoted the apoptosis and exhaustion of CD8+ T cells, inhibited CD8+ T cell function, increased the secretion of immunosuppressive cytokines IL-10 and TGF-β, and decreased the secretion of immune effector cytokines IFN-γ and IL-2 among PBMCs. Mechanistically, hsa_circ_0046523 exerted its biological function by binding to miR-148a-3p to upregulate PD-L1 expression in PC. Moreover, these immune modulating functions of miR-148a-3p/PD-L1 axis were also confirmed in an immunocompetent murine PC model. CONCLUSIONS Our study suggests that hsa_circ_0046523/miR-148a-3p/PD-L1 regulatory axis mediates PC immunosuppressive microenvironment and these molecules are expected to be new targets for remodeling tumor immune microenvironment of PC.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Zha
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Digestive Surgery, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Tang Y, Gao Z, Liu R. Identification and function of circular RNA hsa_circ_0071106: A novel biomarker for differentiation degree of esophageal squamous cell carcinoma. Pathol Res Pract 2022; 233:153875. [DOI: 10.1016/j.prp.2022.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
16
|
CircMAN1A2 is upregulated by Helicobacter pylori and promotes development of gastric cancer. Cell Death Dis 2022; 13:409. [PMID: 35484118 PMCID: PMC9051101 DOI: 10.1038/s41419-022-04811-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric cancer. It has been reported that circRNAs play a vital role in the development of multiple types of cancer. However, the role of H. pylori-induced circRNAs in the development of gastric cancer has not been studied. In this study, we found that H. pylori could induce the upregulation of circMAN1A2 in AGS and BGC823 cells independent of CagA. The downregulation of circMAN1A2 could inhibit the proliferation, migration and invasion of gastric cancer cells, and circMAN1A2 could promote the progression of gastric cancer induced by H. pylori by sponging miR-1236-3p to regulate MTA2 expression. Furthermore, circMAN1A2 knockdown inhibited xenograft tumour growth in vivo, and the overexpression of circMAN1A2 was associated with the progression of gastric cancer. Hence, Helicobacter pylori induced circMAN1A2 expression to promote the carcinogenesis of gastric cancer, and circMAN1A2 might be a new potential diagnostic marker and therapeutic target for gastric cancer.
Collapse
|
17
|
circABCB10 Promotes Malignant Progression of Gastric Cancer Cells by Preventing the Degradation of MYC. JOURNAL OF ONCOLOGY 2021; 2021:4625033. [PMID: 34950208 PMCID: PMC8692003 DOI: 10.1155/2021/4625033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the role of circABCB10 in gastric cancer and the molecular mechanism of promoting malignant progression of gastric cancer cells by preventing the degradation of MYC by hsa-miR-1252-5p. Methods The expression of circABCB10 in gastric cancer tissues and cells was detected by real-time quantitative PCR. MTT, Transwell, clone formation, and TUNEL assay were used to detect the effects of circABCB10 on the proliferation, invasion, and apoptosis of gastric cancer cells. A subcutaneous tumor-bearing model was established to study the inhibitory effect of knockdown circABCB10 on gastric cancer proliferation. The dual luciferase reporter gene assay and RNA pull-down assay were used to verify the regulatory effect of circABCB10 on miR-1252-5p and the regulatory effect of miR-1252-5p on MYC. Results Compared with paracancerous tissues and gastric mucosal epithelial cells, the expression of circABCB10 was significantly increased in human gastric cancer tissues and gastric cancer cells. circABCB10 knockout significantly decreased cell viability and invasion ability and promoted cell apoptosis (P < 0.01). Subcutaneous tumor-bearing experiments in nude mice demonstrated that circABCB10 knockdown inhibited the proliferation of gastric cancer cells. circABCB10 can act as a sponge for miR-1252-5p in gastric cancer cells. Meanwhile, MYC is the target gene of miR-1252-5p. Overexpression of miR-1252-5p and knockdown of MYC reversed the promoting effect of circABCB10 on gastric cancer. Conclusion circABCB10 can promote the proliferation, invasion, and clonal formation of gastric cancer cells by targeting miR-1252-5p and upregulating the expression of MYC. circABCB10/miR-1252-5p/MYC constitutes the regulatory mechanism of ceRNA.
Collapse
|
18
|
Huang L, Pei T, Wu G, Liu J, Pan W, Pan X. Circular RNAs as a Diagnostic Biomarker in Oral Squamous Cell Carcinoma: A Meta-Analysis. J Oral Maxillofac Surg 2021; 80:756-766. [PMID: 34958738 DOI: 10.1016/j.joms.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Studies have found a positive correlation between various cancers and circular RNAs (circRNAs), which are newly discovered noncoding RNAs. However, limited scientific evidence is available to prove the clinical value of circRNAs in the presentation of oral squamous cell carcinoma (OSCC). This study aimed to comprehensively explore the potential of circRNAs as diagnostic indexes of OSCC. METHODS Online databases were systematically searched to identify published literature on the discovery of circRNAs in OSCC. Data were acquired from each reviewed study and collated to create a 2 × 2 eventuality table. Hierarchical analysis of the literature was conducted for the type of cancer, year of publication, and the sample size of each study. The diagnostic accuracy was calculated using indexes such as the pooled sensitivity and specificity and critically assessed using the Quality Assessment for Studies of Diagnostic Accuracy 2. RESULTS This meta-analysis included findings of 6 studies on 335 patients diagnosed with OSCC. These 6 studies examined 7 circRNAs, 5 in tissues and 2 in the saliva of patients with OSCC. When used as a diagnostic tool for OSCC, circRNAs manifested a sensitivity level of 0.72 (95% confidence interval: 0.67 to 0.76) and a degree of specificity of 0.81 (95% confidence interval: 0.76 to 0.85), with a general projected probability rate of 3.82 (95% confidence interval: 2.98 to 4.91) being positive and 0.35 (95% confidence interval: 0.29 to 0.41) being negative. The combined probability rate was 11.07 (95% confidence interval: 7.64 to 16.04), comprising a total of 0.76 (95% confidence interval: 0.72 to 0.79) of the region under the curve. A higher diagnostic value was found for salivary circRNAs (diagnostic odds ratio = 17.52; 95% CI: 10.11 to 30.35) than for tissue circRNAs (diagnostic odds ratio = 8.47; 95% CI: 5.6 to 12.83). This indicated that circRNAs showed a good discrimination ability as biomarkers of OSCC. CONCLUSIONS circRNAs showed high accuracy in the diagnosis of OSCC and could be used as prospective biomarkers to facilitate the diagnostic process.
Collapse
Affiliation(s)
- Long Huang
- Resident, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianchu Pei
- Resident, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guohui Wu
- Resident, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiamin Liu
- Resident, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenna Pan
- Resident, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuan Pan
- Professor, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Li C, Zhu L, Fu L, Han M, Li Y, Meng Z, Qiu X. CircRNA NRIP1 promotes papillary thyroid carcinoma progression by sponging mir-195-5p and modulating the P38 MAPK and JAK/STAT pathways. Diagn Pathol 2021; 16:93. [PMID: 34689819 PMCID: PMC8543861 DOI: 10.1186/s13000-021-01153-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have become a hot topic in the area of tumor biology due to its closed structure and the post-transcriptional regulatory effect. This study aims to clarify the roles of circRNA nuclear receptor-interacting protein 1 (NRIP1; circNRIP1) and the possible mechanisms in papillary thyroid carcinoma (PTC). METHODS The real-time PCR was used to detect the expression level of CircRNA NRIP1 in PTC specimens and cell lines. The effects of CircRNA NRIP1 and miR-195-5p on the PTC cell functions were detected by MTT, transwell, and flow cytometry assays. Dual-luciferase reporter assays and pull down assays were used to verify the association between circRNA NRIP1 and miR-195-5p. The murine xenograft models were constructed to detect the roles of CircRNA NRIP1 and miR-195-5p. Western blot was applied to detect the effects of CircRNA NRIP1 and miR-195-5p on the P38 MAPK and JAK/STAT singling pathways. RESULTS CircRNA NRIP1 was over-expressed in PTC tissues and cells and the high levels of CircRNA NRIP1 were correlated with advanced PTC stage. Depletion of CircRNA NRIP1 inhibited PTC cell proliferation, invasion, while accelerated apoptosis. miR-195-5p upregulation repressed proliferation and invasion capabilities, and accelerated apoptosis of PTC cell lines and restraining the growth of tumor xenografts, while the functions were reversed following CircRNA NRIP1 overexpression in PTC cells and tumor xenografts. Besides, the protein levels of p-p38, p-JAK2 and p-STAT1 were remarkably down-regulated in miR-195-5p overexpressed PTC cells and tumor xenografts, whereas CircRNA NRIP1 up-regulation overturned the impacts. CONCLUSIONS In conclusion, CircRNA NRIP1 promoted PTC progression by accelerating PTC cells proliferation, invasion and tumor growth, while impeding apoptosis by way of sponging miR-195-5p and regulating the P38 MAPK and JAK/STAT pathways.
Collapse
Affiliation(s)
- Chuang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Ya Li
- Institute for Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450000, Zhengzhou, China
| | - Zhaozhong Meng
- Department of Thyroid and Neck, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xinguang Qiu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Νo. 1 Jianshe East Road, 450052, Zhengzhou, China.
| |
Collapse
|
20
|
circSLC30A7 Inhibits Hepatocellular Carcinoma Cell Proliferation via the miR-767-5p/FBXW7/NOTCH1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:8800657. [PMID: 34675978 PMCID: PMC8526270 DOI: 10.1155/2021/8800657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Circular RNAs, noncoding RNAs, have attracted much attention in various human tumor research fields. They regulate the development of various human cancers via microRNA sponges. This study aimed to assess the molecular mechanism of circSLC30A7 in hepatocellular carcinoma (HCC). In our study, we identified that circSLC30A7 was significantly downregulated in HCC cell lines and tissues. Furthermore, gain and loss function experiments were conducted to elucidate the biological functions of circSLC30A7 in HCC cell lines. Mechanistically, circSLC30A7 sponged miR-767-5p, inhibiting the expression of its downstream protein, FBXW7. In summary, this study revealed that circSLC30A7 is an essential tumor suppressor that inhibits HCC tumorigenesis through the miR-767-5p/FBXW7/NOTCH1 axis. Taken together, circSLC30A7 reduces HCC malignancy and can be a biomarker for HCC management.
Collapse
|
21
|
Yu J, Li F, Li Y, Li Z, Jia G, Ding B, Zhou Y. The effects of hsa_circ_0000517/miR-326 axis on the progression of breast cancer cells and the prediction of miR-326 downstream targets in breast cancer. Pathol Res Pract 2021; 227:153638. [PMID: 34619576 DOI: 10.1016/j.prp.2021.153638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
It has been proposed that circular RNAs (circRNAs) play crucial roles in the initiation and progression of various cancers including breast cancer. Our study aimed to determine the function and regulatory mechanism of hsa_circ_0000517 in breast cancer. qRT-PCR was applied to determine hsa_circ_0000517 expression in breast cancer cells. The circular structure of hsa_circ_0000517 was confirmed using RNase R digestion assay. The subcellular distribution of hsa_circ_0000517 was analyzed using nuclear mass separation assay. Effects of hsa_circ_0000517 on the malignant behaviors of breast cancer cells were determined using CCK-8, colony formation assay, flow cytometry analysis, caspase-3 activity assay, and Transwell invasion assay. Bioinformatics analysis, luciferase reporter assay, and RIP were used to predict and confirm the interaction between hsa_circ_0000517 and miR-326. Bioinformatics analysis was used to search the possible targets of miR-326. Hsa_circ_0000517 was upregulated in breast cancer tissues and cells. Hsa_circ_0000517 was a stable circularized transcript that was preferentially distributed in the cytoplasm. Hsa_circ_0000517 knockdown inhibited cell proliferation, colony formation ability, and invasion and triggered apoptosis in breast cancer cells. Hsa_circ_0000517 acted as a sponge of miR-326 to suppress its expression. miR-326 inhibition abolished the effects of hsa_circ_0000517 knockdown on the malignant behaviors of breast cancer cells. Totally 17 genes were identified as the potential targets of miR-326 in breast cancer. In conclusion, hsa_circ_0000517 silencing repressed breast cancer progression by upregulating miR-326 expression.
Collapse
Affiliation(s)
- Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang 473012, China
| | - Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital of Nanyang, Nanyang 473000, China
| | - Yan Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Yeqi Zhou
- Department of Radiology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China.
| |
Collapse
|
22
|
CircRNA_0079586 and circRNA_RanGAP1 are involved in the pathogenesis of intracranial aneurysms rupture by regulating the expression of MPO. Sci Rep 2021; 11:19800. [PMID: 34611229 PMCID: PMC8492745 DOI: 10.1038/s41598-021-99062-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Several circRNAs have been reported to be dysregulated in human endothelial cells through sponging miRNAs. Previous reports demonstrated that MPO not only contributed to the formation and rupture of cerebral aneurysm but was also correlated with the degenerative remodeling predisposition to saccular intracranial aneurysm wall rupture, although its underlying mechanisms remain to be explored. Microarray screening was performed to compare the differential expression of circRNAs in the endothelial cells collected from UIAs and RIAs patients. Luciferase assays were used to explore the regulatory relationship between circRNAs and miRNAs, and between miRNAs and their target genes. Microarray screening analysis found a batch of up-regulated circRNAs in the endothelial cells harvested from RIAs patients, including circRNA-0079586 and circRNA-RanGAP1. Luciferase assays revealed the suppressive role of miR-183-5p/miR-877-3p in the expression of circRNA-0079586/circRNA-RanGAP1/MPO. And the expression of circRNA-0079586 and circRNA-RanGAP1 was respectively suppressed by the overexpression of miR-183-5p and miR-877-3p. And both the transfection of miR-183-5p and miR-877-3p mimics suppressed the relative expression level of MPO mRNA. The expression of circRNA-0079586, circRNA-RanGAP1 and MPO was significantly activated in the endothelial cells collected from RIAs patients when compared with UIAs patients, whereas the expression of miR-183-5p and miR-877-3p was remarkably suppressed in the endothelial cells collected from RIAs patients when compared with UIAs patients. We further altered the expression of circRNA-0079586 and circRNA-RanGAP1 using siRNA and overexpression in HUVECS, and the expression of circRNA-0079586 and circRNA-RanGAP1 was significantly and negatively correlated with the expression of miR-183-5p and miR-877-3p, but positively correlated with the expression of MPO under different conditions. In this study, we established two MPO-modulating signaling pathways of circRNA_0079586/miR-183-5p/MPO and circRNA_RanGAP1/miR-877-3p/MPO. These two signaling pathways are involved in the pathogenesis of intracranial aneurysms rupture.
Collapse
|
23
|
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C, Fu S. CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 2021; 48:201. [PMID: 34528697 PMCID: PMC8480381 DOI: 10.3892/ijmm.2021.5034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine cancer. Over the last 50 years, the global incidence of TC has been increasing. The survival rate of TC is higher than that of most other types of cancer, but it depends on numerous factors, including the specific type of TC and stage of the disease. Circular RNAs (circRNAs) are a new class of long noncoding RNA with a closed loop structure that have a critical role in the complex gene regulatory network that controls the emergence of TC. The most important function of circRNAs is their ability to specifically bind to microRNAs. In addition, the biological functions of circRNAs also include interactions with proteins, regulation of the transcription of genes and acting as translation templates. Based on the characteristics of circRNAs, they have been identified as potential biomarkers for the diagnosis of tumors. In the present review, the function and significance of circRNAs and their potential clinical implications for TC were summarized. Furthermore, possible treatment approaches involving the use of mesenchymal stem cells (MSCs) and exosomes derived from MSCs as carriers to load and transport circRNAs were discussed.
Collapse
Affiliation(s)
- Guomao Zhu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xingyu Chang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xinzhu Zhao
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xulei Tang
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Chengxu Ma
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Songbo Fu
- Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
24
|
Emerging roles of circUBAP2 targeting miR-370-3p in proliferation, apoptosis, and invasion of papillary thyroid cancer cells. Hum Cell 2021; 34:1866-1877. [PMID: 34346032 DOI: 10.1007/s13577-021-00585-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) have been documented to be aberrantly expressed in many types of malignancies and involved in cancer progression. However, their role in thyroid cancer (TC) remains largely unknown. Our study aimed to explore the role and mechanism of circUBAP2 in TC. The differentially expressed circRNAs in TC tissues were identified using GSE18105 from gene expression omnibus (GEO) database. CircUBAP2 and miR-370-3p expression was analyzed using qRT-PCR. The stability of circUBAP2 was confirmed by actinomycin D and RNase R. The subcellular localization of circUBAP2 was detected using cell fractionation assay. Cell proliferation, apoptosis, and invasion were evaluated using MTT, flow cytometry analysis, and Transwell invasion assay, respectively. The interaction between circUBAP2 and miR-370-3p was predicted using bioinformatics analysis and validated by luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation. CircUBAP2 was upregulated and miR-370-3p was downregulated in TC tissues and cells. CircUBAP2 was highly stable, resistant to RNase R digestion, and predominantly localized in the cytoplasm. CircUBAP2 knockdown inhibited cell proliferation and invasion and triggered apoptosis in TC cells. Bioinformatics analysis showed that circUBAP2 contained putative binding sites of miR-370-3p. CircUBAP2 acted as a sponge to inhibit miR-370-3p expression. Mechanistically, miR-370-3p inhibition abolished the effects of circUBAP2 on proliferation, apoptosis, and invasion in TC cells. Taken together, CircUBAP2 knockdown impeded the proliferation and invasion and induced apoptosis in TC cells via sponging miR-370-3p.
Collapse
|
25
|
Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells 2021; 10:cells10081945. [PMID: 34440714 PMCID: PMC8392363 DOI: 10.3390/cells10081945] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA characterized by a covalently closed continuous loop. CircRNA is generated by pre-mRNA through back-splicing and is probably cleared up by extracellular vesicles. CircRNAs play a pivotal role in the epigenetic regulation of gene expression at transcriptional and post-transcriptional levels. Recently, circRNAs have been demonstrated to be involved in the regulation of liver homeostasis and diseases. However, the epigenetic role and underlying mechanisms of circRNAs in chronic liver diseases remain unclear. This review discussed the role of circRNAs in non-neoplastic chronic liver diseases, including alcoholic liver disease (ALD), metabolic-associated fatty liver disease (MAFLD), viral hepatitis, liver injury and regeneration, liver cirrhosis, and autoimmune liver disease. The review also highlighted that further efforts are urgently needed to develop circRNAs as novel diagnostics and therapeutics for chronic liver diseases.
Collapse
|
26
|
Leypold NA, Speicher MR. Evolutionary conservation in noncoding genomic regions. Trends Genet 2021; 37:903-918. [PMID: 34238591 DOI: 10.1016/j.tig.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Humans may share more genomic commonalities with other species than previously thought. According to current estimates, ~5% of the human genome is functionally constrained, which is a much larger fraction than the ~1.5% occupied by annotated protein-coding genes. Hence, ~3.5% of the human genome comprises likely functional conserved noncoding elements (CNEs) preserved among organisms, whose common ancestors existed throughout hundreds of millions of years of evolution. As whole-genome sequencing emerges as a standard procedure in genetic analyses, interpretation of variations in CNEs, including the elucidation of mechanistic and functional roles, becomes a necessity. Here, we discuss the phenomenon of noncoding conservation via four dimensions (sequence, regulatory conservation, spatiotemporal expression, and structure) and the potential significance of CNEs in phenotype variation and disease.
Collapse
Affiliation(s)
- Nicole A Leypold
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
27
|
Zeng Y, Zheng Z, Liu F, Yi G. Circular RNAs in metabolism and metabolic disorders. Obes Rev 2021; 22:e13220. [PMID: 33580638 DOI: 10.1111/obr.13220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) is a serious health condition triggered by hyperglycemia, dyslipidemia, and abnormal adipose deposition. Recently, circular RNAs (circRNAs) have been proposed as key molecular players in metabolic homeostasis due to their regulatory effects on genes linked to the modulation of multiple aspects of metabolism, including glucose and lipid homeostasis. Dysregulation of circRNAs can lead to metabolic disorders, indicating that circRNAs represent plausible potential targets to alleviate metabolic abnormalities. More recently, a series of circulating circRNAs have been identified to act as both essential regulatory molecules and biomarkers for the progression of metabolism-related disorders, including type 2 diabetes mellitus (T2DM or T2D) and cardiovascular disease (CVD). The findings of this study highlight the function of circRNAs in signaling pathways implicated in metabolic diseases and their potential as future therapeutics and disease biomarkers.
Collapse
Affiliation(s)
- Yongzhi Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi Zheng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Fengtao Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
28
|
Lv C, Sun W, Huang J, Qin Y, Ji X, Zhang H. Expression Profiles of Circular RNAs in Human Papillary Thyroid Carcinoma Based on RNA Deep Sequencing. Onco Targets Ther 2021; 14:3821-3832. [PMID: 34188490 PMCID: PMC8232851 DOI: 10.2147/ott.s316292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most prevalent type of thyroid cancer. Herein, we purposed to explore the expression patterns of circRNAs in PTC with the overarching goal of improving early diagnosis rates for individuals with PTC. Methods We used RNA deep sequencing to determine the expression patterns of circRNAs in PTC. Besides, RT-qPCR was employed to confirm circRNAs. The diagnostic potential of the circRNAs was explored by constructing ROC curves. GO along with KEGG pathway analyses were utilized to elucidate the potential biological roles of differentially expressed circRNAs. Moreover, we predicted cross talks among circRNAs, miRNAs, and mRNAs, followed by establishment of a ceRNA network. Results Deep sequencing of four PTC pairs and neighboring nontumor tissues identified 16569 circRNAs, of which, 301 were upregulated and 419 were downregulated. The RT-qPCR data demonstrated that the expression of chr5: 38481299-38530666-, chr2: 159932176-159945082-, chr10: 179994-249088+, chr3: 121378716-121381532+, and chr1: 237423092-237445522+ was downregulated, while the expression of chr4: 25665378-25667298+, chr5: 161330883-161336769-, chr1: 12578718-12579412-, chr7: 116695750-116700284+, and chr7: 116699071-116700284+ was upregulated. The stability test exhibited that circRNAs were more tolerant to temperature, RNase R, and time. On the other hand, ROC curves illustrated that chr4: 25665378-25667298+, chr1: 12578718-12579412-, chr7: 116699071-116700284+, chr7: 116695750-116700284+, chr5: 161330883-161336769-, and chr10: 179994-249088+ were effective as diagnostic indicators. However, a logistic regression model combining the six indicators achieved a better combined prediction index, with 97.7% sensitivity and 95.3% specificity. Moreover, GO along with KEGG pathway analyses illustrated that differentially expressed circRNAs were linked to tumorigenesis. Furthermore, bioinformatics analyses established a promising ceRNAs network among mRNAs, circRNAs, and miRNAs. Conclusion Herein, we demonstrated that several circRNAs are promising PTC diagnostic biomarkers. Further study on the functions and mechanisms of these circRNAs may contribute to the understanding of PTC.
Collapse
Affiliation(s)
- Chengzhou Lv
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
29
|
Zuo ZL, Cao RF, Wei PJ, Xia JF, Zheng CH. Double matrix completion for circRNA-disease association prediction. BMC Bioinformatics 2021; 22:307. [PMID: 34103016 PMCID: PMC8185931 DOI: 10.1186/s12859-021-04231-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of single-stranded RNA molecules with a closed-loop structure. A growing body of research has shown that circRNAs are closely related to the development of diseases. Because biological experiments to verify circRNA-disease associations are time-consuming and wasteful of resources, it is necessary to propose a reliable computational method to predict the potential candidate circRNA-disease associations for biological experiments to make them more efficient. RESULTS In this paper, we propose a double matrix completion method (DMCCDA) for predicting potential circRNA-disease associations. First, we constructed a similarity matrix of circRNA and disease according to circRNA sequence information and semantic disease information. We also built a Gauss interaction profile similarity matrix for circRNA and disease based on experimentally verified circRNA-disease associations. Then, the corresponding circRNA sequence similarity and semantic similarity of disease are used to update the association matrix from the perspective of circRNA and disease, respectively, by matrix multiplication. Finally, from the perspective of circRNA and disease, matrix completion is used to update the matrix block, which is formed by splicing the association matrix obtained in the previous step with the corresponding Gaussian similarity matrix. Compared with other approaches, the model of DMCCDA has a relatively good result in leave-one-out cross-validation and five-fold cross-validation. Additionally, the results of the case studies illustrate the effectiveness of the DMCCDA model. CONCLUSION The results show that our method works well for recommending the potential circRNAs for a disease for biological experiments.
Collapse
Affiliation(s)
- Zong-Lan Zuo
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
| | - Rui-Fen Cao
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China
| | - Pi-Jing Wei
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jun-Feng Xia
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chun-Hou Zheng
- Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, China.
| |
Collapse
|
30
|
Zhang H, Shen Y, Zhang B, Qian M, Zhang Y, Yang H. Hsa_circ_0003829 serves as a potential diagnostic predictor for oral squamous cell carcinoma. J Int Med Res 2021; 48:300060520936880. [PMID: 32993417 PMCID: PMC7545778 DOI: 10.1177/0300060520936880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Increasing evidence suggests that circular RNAs (circRNAs) play a major role in tumorigenesis and cancer progression. This study aimed to identify aberrant expression of hsa_circ_0003829 in oral squamous cell carcinoma (OSCC) and to explore its clinical significance. Methods We conducted a prospective clinical study to examine the expression pattern of hsa_circ_0003829 in 60 paired OSCC and normal clinical samples and in cell lines using real-time quantitative polymerase chain reaction. We also evaluated the diagnostic value of hsa_circ_0003829 in OSCC based on receiver operating characteristic (ROC) curve analysis, and examined the relationships between hsa_circ_0003829 expression and clinicopathological features in patients with OSCC. We further used bioinformatics software CircInteractome (https: //Circinteractome.nia.nih.gov/) to predict circRNA–microRNA interactions. Results Hsa_circ_0003829 was significantly downregulated in OSCC compared with adjacent normal tissues. The area under the ROC curve was 0.81. Low expression levels of hsa_circ_0003829 in OSCC tissues were negatively correlated with lymph node metastasis status and TNM stage. Conclusions Downregulated expression of has_circ_0003829 suggests that this may be a key circRNA in OSCC, and may serve as a prospective biomarker for the diagnosis of OSCC.
Collapse
Affiliation(s)
- Hanyu Zhang
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuehong Shen
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Biru Zhang
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Qian
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongyu Yang
- Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
31
|
Sun W, Zhang H, Duan W, Zhu H, Gu C. Tumor suppressor role of hsa_circ_0035445 in gastric cancer. J Clin Lab Anal 2021; 35:e23727. [PMID: 33830559 PMCID: PMC8183929 DOI: 10.1002/jcla.23727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are closely related to the occurrence and development of cancers. However, the roles of circRNAs in gastric cancer are largely unknown. Total 104 pairs of gastric cancer tissues and non‐cancer tissues, fasting plasma of 42 healthy people and 42 gastric cancer patients’ one day before operation and 10 days after operation were collected. Quantitative reverse transcription‐polymerase chain reaction was used to detect the expression level of hsa_circ_0035445. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to analyze its diagnostic value. Small interfering RNA and overexpression vector were used to downregulate and upregulate the expression of hsa_circ_0035445, respectively. Cell Counting Kit‐8 and colony formation assays were used to detect the proliferation ability. Trans‐well assay and scratch assay were used to detect the migration ability. Finally, flow cytometry was used to detect the changes of cell cycle distribution and apoptosis. Hsa_circ_0035445 was lowly expressed in gastric cancer tissues, plasma of gastric cancer patients, and gastric cancer cells. The expression level of hsa_circ_0035445 in gastric cancer tissues was relationship with tumor size and distant metastasis. The AUC of hsa_circ_0035445 in tissues and plasma was 0.68 and 0.86, respectively. Upregulation of hsa_circ_0035445 suppressed the proliferation and migration, promoted apoptosis, and blocked cells at G0/G1 phase. Downregulation of hsa_circ_0035445 promoted the proliferation and migration, suppressed apoptosis, and blocked cells at S phase. In conclusion, hsa_circ_0035445 may become a new target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Weiliang Sun
- The Affiliated People's Hospital, Ningbo University, Ningbo, China
| | - Haiyan Zhang
- The Affiliated People's Hospital, Ningbo University, Ningbo, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Wenbiao Duan
- The Affiliated People's Hospital, Ningbo University, Ningbo, China
| | - Hui Zhu
- The Affiliated People's Hospital, Ningbo University, Ningbo, China
| | - Chijiang Gu
- The Affiliated People's Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
Sunagawa Y, Yamada S, Sonohara F, Kurimoto K, Tanaka N, Suzuki Y, Inokawa Y, Takami H, Hayashi M, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Genome-wide identification and characterization of circular RNA in resected hepatocellular carcinoma and background liver tissue. Sci Rep 2021; 11:6016. [PMID: 33727578 PMCID: PMC7971023 DOI: 10.1038/s41598-021-85237-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA known to affect cancer-related micro RNAs and various transcription factors. circRNA has promise as a cancer-related biomarker because its circular structure affords high stability. We found using high-throughput sequencing that seven candidate circRNAs (hsa_circ_0041150, hsa_circ_0025624, hsa_circ_0001020, hsa_circ_0028129, hsa_circ_0008558, hsa_circ_0036683, hsa_circ_0058087) were downregulated in HCC. The expression of these circRNAs was examined by quantitative PCR in 233 sets of HCC and matched background normal liver tissues, and correlations between candidate circRNA expression and prognosis were evaluated. The results of quantitative PCR showed that expression of hsa_circ_0041150, hsa_circ_0001020 and hsa_circ_0008558 was significantly lower in HCC than in background normal liver tissues. Kaplan–Meier analysis revealed that low expression of hsa_circ_0001020, hsa_circ_0036683, and hsa_circ_0058087 was associated with poor recurrence-free (RFS) and overall survival (OS) in HCC. Additionally, multivariate analysis revealed that low hsa_circ_0036683 expression was a significant prognostic factor, independent from other clinicopathological features, for inferior RFS and OS. There was no significant association between the expression of these circRNAs and hepatitis B/C status or cirrhosis. This study therefore identified circRNAs as potential prognostic markers for patients who undergo curative surgery for HCC and highlighted hsa_circ_0036683 as the most useful biomarker.
Collapse
Affiliation(s)
- Yuki Sunagawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobutake Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yunosuke Suzuki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
33
|
Ma H, Huang C, Huang Q, Li G, Li J, Huang B, Zhong Q, Cao C. Circular RNA circ_0014717 Suppresses Hepatocellular Carcinoma Tumorigenesis Through Regulating miR-668-3p/BTG2 Axis. Front Oncol 2021; 10:592884. [PMID: 33598424 PMCID: PMC7883829 DOI: 10.3389/fonc.2020.592884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have reported a close association between circRNAs and cancer development. CircRNAs have been recognized to be involved in various biological processes. Up to now, the function of circRNAs in hepatocellular carcinoma (HCC) is still poorly known. qRT-PCR was used to test circ_0014717 expression in HCC tissue samples and cells was determined. It was shown that circ_0014717 was significantly decreased in HCC. Then, we observed overexpression of circ_0014717 obviously repressed HCC cell growth, migration and invasion. Next, we predicted circ_0014717 acted as a sponge of miR-668-3p. miR-668-3p has been reported to participate in several diseases. In our work, it was shown miR-668-3p was greatly increased in HCC and the direct binding sites between circ_0014717 and miR-668-3p were validated. In addition, B-cell translocation gene 2 (BTG2) is closely involved in cellular carcinogenic processes. BTG2 was predicted as a target for miR-668-3p. By performing rescue assays, we demonstrated that circ_0014717 repressed HCC progression via inhibiting BTG2 expression and sponging miR-668-3p. It was manifested loss of circ_0014717 induced HCC progression, which was reversed by BTG2 in Hep3B cells. In conclusion, our findings illustrated a novel circ_0014717/miR-668-3p/BTG2 regulatory signaling pathway in HCC.
Collapse
Affiliation(s)
- Hongxi Ma
- Clinical Laboratory, Wuzhou Gongren Hospital, Wuzhou, China
| | - Chunchun Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiuhuan Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guangzhi Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bin Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiuhong Zhong
- Department of Ultrasonics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Cong Cao
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
34
|
Zhou H, Zheng XD, Lin CM, Min J, Hu S, Hu Y, Li LY, Chen JS, Liu YM, Li HD, Meng XM, Li J, Yang YR, Xu T. Advancement and properties of circular RNAs in prostate cancer: An emerging and compelling frontier for discovering. Int J Biol Sci 2021; 17:651-669. [PMID: 33613119 PMCID: PMC7893591 DOI: 10.7150/ijbs.52266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer (PC) is the most common carcinoma among men worldwide which results in 26% of leading causes of cancer-related death. However, the ideal and effective molecular marker remains elusive. CircRNA, initially observed in plant-infected viruses and Sendai virus in 1979, is generated from pre-mRNA back-splicing and comes in to play by adequate expression. The differential expression in prostate tissues compared with the control reveals the promising capacity in modulating processes including carcinogenesis and metastasis. However, the biological mechanisms of regulatory network in PC needs to systemically concluded. In this review, we enlightened the comprehensive studies on the definite mechanisms of circRNAs affecting tumor progression and metastasis. What's more, we validated the potential clinical application of circRNAs serving as diagnostic and prognostic biomarker. The discussion and analysis in circRNAs will broaden our knowledge of the pathogenesis of PC and further optimize the current therapies against different condition.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC West District, University of Science and Technology of China, Hefei 230031, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xu-Dong Zheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Chang-Ming Lin
- Department of Urology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230011, China
| | - Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Yu-Min Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hao-Dong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Trial Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
35
|
Khanipouyani F, Akrami H, Fattahi MR. Circular RNAs as important players in human gastric cancer. Clin Transl Oncol 2021; 23:10-21. [PMID: 32583185 DOI: 10.1007/s12094-020-02419-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023]
Abstract
As one of the most prevalent gastrointestinal diseases, gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. Since GC has no clinical manifestations in the early stage of the disease, most patients are detected in the later phases of disease and have an unfortunately lower chance of recovery. Circular RNAs (circRNAs), a novel category of non-coding RNAs (ncRNAs), are mainly engaged in the regulation of gene expression at the transcriptional and post-transcriptional levels. Numerous evidences have revealed that circRNAs play key roles in GC as they are involved in cell proliferation, growth, and apoptosis via modulating the expression of some target genes, miRNAs, and proteins. Many studies have addressed the impact of circRNA dysregulation on GC initiation, progression, and invasion via binding to miRNAs or RNA binding proteins. Moreover, changes in circRNA expression are associated with pathological and clinical features of GC highlighting their potentials as diagnostic or prognostic biomarkers in GC. In the current study, the recent findings on the significance of circRNAs in the development and progression of GC are reviewed. We focus on the implications of circRNAs as potential diagnostic or prognostic biomarkers in this malignancy.
Collapse
Affiliation(s)
- F Khanipouyani
- Department of Biology, Faculty of Science, Razi University, kermanshah, Iran
| | - H Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M R Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Liu Y, Li Z, Hao J, Chen H, Hou T, Hao H. Circular RNAs associated with a mouse model of concanavalin A-induced autoimmune hepatitis: preliminary screening and comprehensive functional analysis. FEBS Open Bio 2020; 10:2350-2362. [PMID: 32965791 PMCID: PMC7609805 DOI: 10.1002/2211-5463.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Without treatment, autoimmune hepatitis (AIH) often leads to cirrhosis, liver failure and, in some cases, death. However, the pathogenesis of AIH remains incompletely understood. Here, we explored the relationship between differentially expressed circular RNAs (DECs) and development of AIH by obtaining an expression profile of DECs in a concanavalin A‐induced AIH mouse model by microarray. In total, we identified 27 DECs; the host genes of these DECs were annotated with 140 Gene Ontology terms and 19 pathways, revealing potential roles in the metabolism of cellular ions and regulation of protein expression, as well as possible involvement in endocytosis and apoptosis. We constructed a circular RNA–microRNA network that was used to infer that a mmu_circ_0001520/mmu‐miR‐193b‐3p/MAPK10 network may be associated with the occurrence of AIH. These findings may help lay the foundation for validation of the potential roles of circular RNAs in AIH.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhencheng Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jianheng Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Chen
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Tiezheng Hou
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
37
|
Riaz F, Li D. Non-coding RNA Associated Competitive Endogenous RNA Regulatory Network: Novel Therapeutic Approach in Liver Fibrosis. Curr Gene Ther 2020; 19:305-317. [PMID: 31696817 DOI: 10.2174/1566523219666191107113046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Liver fibrosis or scarring is the most common pathological feature caused by chronic liver injury, and is widely considered one of the primary causes of morbidity and mortality. It is primarily characterised by hepatic stellate cells (HSC) activation and excessive extracellular matrix (ECM) protein deposition. Overwhelming evidence suggests that the dysregulation of several noncoding RNAs (ncRNAs), mainly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) contributes to the activation of HSC and progression of liver fibrosis. These ncRNAs not only bind to their target genes for the development and regression of liver fibrosis but also act as competing endogenous RNAs (ceRNAs) by sponging with miRNAs to form signaling cascades. Among these signaling cascades, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA are critical modulators for the initiation, progression, and regression of liver fibrosis. Thus, targeting these interacting ncRNA cascades can serve as a novel and potential therapeutic target for inhibition of HSC activation and prevention and regression of liver fibrosis.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
38
|
The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis 2020; 11:682. [PMID: 32826876 PMCID: PMC7443145 DOI: 10.1038/s41419-020-02851-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/30/2020] [Indexed: 11/08/2022]
Abstract
Oral squamous cell carcinoma (OSCC) in the background of oral submucous fibrosis (OSF) caused by areca nut chewing has a high incidence in Asia-Pacific countries. However, the molecular mechanism remains unclear. Here, we performed circRNA microarray analysis to screen the circRNA expression profiles in OSCC and OSF. We identified circEPSTI1 as a circRNA with consistent, sequential upregulation from normal buccal mucosa (NBM) to OSF to OSCC. Functionally, circEPSTI1 significantly promoted OSCC cell proliferation and invasion, as evidenced by the CCK8, colony formation, wound healing, and transwell assays with circEPSTI1 overexpression and silencing. OSCC patients with circEPSTI1high status exhibited poor prognoses. CircEPSTI1 sponged miR-942-5p and accelerated epithelial-mesenchymal transition (EMT) to increase LTBP2 expression in OSCC through phosphorylation of PI3K/Akt/mTOR signaling pathway components. Blocking the PI3K/Akt/mTOR signaling pathway with the dual PI3k/mTOR inhibitor BEZ235 reversed OSCC progression induced by overexpression of circEPSTI1 and LTBP2. Collectively, these results indicate that the circEPSTI1/miR-942-5p/LTBP2 axis affects OSCC cell proliferation and invasion via the acceleration of EMT and the phosphorylation of PI3K/Akt/mTOR signaling pathway components. CircEPSTI1 may be an independent diagnostic and prognostic marker and a potential therapeutic target for OSCC patients with OSF.
Collapse
|
39
|
Song YF, Zhao L, Wang BC, Sun JJ, Hu JL, Zhu XL, Zhao J, Zheng DK, Ge ZW. The circular RNA TLK1 exacerbates myocardial ischemia/reperfusion injury via targeting miR-214/RIPK1 through TNF signaling pathway. Free Radic Biol Med 2020; 155:69-80. [PMID: 32445866 DOI: 10.1016/j.freeradbiomed.2020.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Myocardial ischemia/reperfusion injury (IRI) induces cardiomyocytes death and leads to loss of cardiac function. Circular RNAs (circRNA) have gain increasing interests in modulating myocardial IRI. In this study, we aim to investigate the role and exact mechanism of circTLK1 in the pathogenesis of myocardial IRI. METHODS Myocardial IRI was developed in mice with measuring hemodynamic parameters and the activity of serum myocardial enzymes to evaluate cardiac function. HE and TTC staining were performed to assess infarct area. Expression patterns of circTLK1 and miR-214 were investigated using qRT-PCR assay. Gene expression of circTLK1, miR-214 or RIPK was altered by transfecting with their overexpression or knockdown vectors. The apoptosis of cardimyocytes was assessed by TUNEL staining and Caspase-3 activity analysis. Apoptosis-related markers Bcl-2, Bax, and caspase3, as well as TNF-α signals were determined by western blotting. The interactions of circTLK1/miR-214 and miR-214/RIPK1 were verified using luciferase reporter assay. RNA immunoprecipitation (RIP) was subjected to further definite the direct binding of circTLK1/miR-214. The regulatory network of circTLK1/miR-214/RIPK1 was further validated in vivo. RESULTS circTLK1 was an up-regulated circRNA found in a myocardial IRI mouse model. Mice with silencing circTLK1 significantly alleviated the impaired cardiac function indexes and decreased infarct area, thus attenuating the pathogenesis of myocardial IRI. Knockdown of circTLK1 dramatically decreased cardiomyocytes apoptosis, which was determined by apoptosis-related proteins. miR-214 was identified as a downstream effector to reverse circTLK1-mediated damage effects in myocardial IRI. miR-214 could directly target RIPK1 via binding to its' 3'-UTR. Overexpression of RIPK1 led to impaired cardiac function indexes, increased infarct area, and cell apoptosis, which abolished the protective effects of miR-214. The TNF signaling pathway was demonstrated to be involved in the circTLK1/miR-214/RIPK1 regulatory network in myocardial IRI. CONCLUSION Taken together, our study revealed an up-regulated circRNA, circTLK1, could exacerbate myocardial IRI via targeting miR-214/RIPK1-mediated TNF signaling pathway, which may provide therapeutic targets for treatment.
Collapse
Affiliation(s)
- Yu-Fang Song
- Department of Anesthesiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Liang Zhao
- Department of Anesthesiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Bao-Cai Wang
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Jun-Jie Sun
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Jun-Long Hu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Xi-Liang Zhu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Jian Zhao
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Dao-Kuo Zheng
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Zhen-Wei Ge
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascula Hospital, Zhengzhou, 450003, Henan Province, PR China.
| |
Collapse
|
40
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
41
|
Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal 2020; 34:e23359. [PMID: 32419229 PMCID: PMC7370736 DOI: 10.1002/jcla.23359] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are structural ubiquitous RNA molecules. Accumulating evidences have elucidated that circRNAs play essential roles in the pathogenesis of diseases including cancers. Exosomal circRNAs are those circRNAs stably existing in exosomes and having high clinical values as novel potential diagnostic biomarkers of many diseases. Gastrointestinal (GI) malignancies, including pancreatic cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer, are leading causes of mortality worldwide and a major global health burden. However, no ideal tumor biomarkers of screening early GI cancers are currently available. METHODS We collected data through Web of Science. The search terms used were as follows: circular RNA, circRNA, exosomes, exosomal circRNAs, biomarkers, gastrointestinal malignancies, pancreatic cancer, hepatocellular carcinoma, HCC, gastric cancer, colorectal cancer, physiological functions, biogenesis, molecular mechanism. Only articles published in English were included. RESULTS We found that several circRNAs and exosomal circRNAs have been used as potential biomarkers to screen GI cancers including pancreatic cancer (hsa_circ_0001649, circ_0007534, circ_0030235, circRHOT1, circZMYM2, circ-LDLRAD3, chr14:101402109-101464448C, chr4:52729603-52780244C, circ-IARS, and circ-PDE8A), HCC (circSETD3, circADAMTS13, hsa_circ_0007874, hsa_circ_104135, circFBLIM1, cSMARCA5, circRNA-100338, and circPTGR1), colorectal cancer (hsa_circ_0001178, hsa_circ_0000826, hsa_circ_0004771, circDDX17, circITGA7, and circHIPK3), and gastric cancer (hsa_circ_0074362, circNRIP1, circAKT3, circ-DONSON, circPSMC3, circ-KIAA1244, circPVRL3, circPVT1, hsa_circ_0000096, ciRS-133, hsa_circ_0001017, and hsa_circ_0061276). CONCLUSION CircRNAs and exosomal circRNAs have the potential high clinical diagnostic values for GI malignancies.
Collapse
Affiliation(s)
- Yezhao Wang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Suyuan Xu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of PathophysiologyNingbo University School of MedicineNingboChina
| |
Collapse
|
42
|
Tang Z, Tan J, Yuan X, Zhou Q, Yuan Z, Chen N, Shen M. Circular RNA-ABCB10 promotes angiogenesis induced by conditioned medium from human amnion-derived mesenchymal stem cells via the microRNA-29b-3p/vascular endothelial growth factor A axis. Exp Ther Med 2020; 20:2021-2030. [PMID: 32782512 PMCID: PMC7401301 DOI: 10.3892/etm.2020.8939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
The powerful ability of human amnion-derived mesenchymal stem cells (hAMSCs) to promote angiogenesis suggests that they may facilitate angiogenesis-associated therapeutic strategies. However, the molecular mechanisms underlying hAMSC-induced angiogenesis remain largely unknown. The present study results suggested that enhanced migration and tube formation in human umbilical vein endothelial cells (HUVECs) was induced by conditioned medium from hAMSCs (hAMSC-CM). In addition, culture with this conditioned medium resulted in the increased expression of circular RNA ATP binding cassette subfamily B member 10 (circ-ABCB10) and vascular endothelial growth factor A (VEGFA). In the present study genes related to thecirc-ABCB10/microRNA (miR)-29b-3p/VEGFA pathway were predicted using bioinformatics software, and further investigated using in vitro luciferase reporter assays. Loss-of-function assays were performed using small interfering RNAs (siRNAs). The results suggested that siRNA-silencing of circ-ABCB10 in HUVECs weakened migration and tube formation of HUVECs following hAMSC-CM treatment and reduced the levels of VEGFA expression. Treatment with an miR-29b-3p inhibitor could largely rescue these effects in HUVECs, following circ-ABCB10 silencing. The present study results suggest that the circ-ABCB10/miR-29b-3p/VEGFA pathway may be involved in the pro-angiogenic role of hAMSC-CM in HUVECs.
Collapse
Affiliation(s)
- Zichun Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Stomatology, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| | - Junling Tan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Qianwen Zhou
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Zhiyao Yuan
- Department of Periodontology Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210029, P.R. China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
43
|
Tang Z, Wu X, Hu L, Xiao Y, Tan J, Zuo S, Shen M, Yuan X. Circ-100290 Positively Regulates Angiogenesis Induced by Conditioned Medium of Human Amnion-Derived Mesenchymal Stem Cells Through miR-449a/eNOS and miR-449a/VEGFA Axes. Int J Biol Sci 2020; 16:2131-2144. [PMID: 32549760 PMCID: PMC7294943 DOI: 10.7150/ijbs.39895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The powerful pro-angiogenic capacity of human amnion-derived mesenchymal stem cells (hAMSCs) could be a valuable therapeutic angiogenesis strategy for bone regeneration. However, the molecular mechanisms underlying this process remain largely unknown. Herein, we report upregulated expression of circular RNA 100290 (circ-100290) and an enhanced angiogenic phenotype of human umbilical vein endothelial cells (HUVECs) incubated with conditioned medium from hAMSCs (hAMSC-CM), whereas downregulation of circ-100290 reversed the pro-angiogenic capacity of HUVECs induced by hAMSC-CM. Circ-100290/microRNA 449a (miR-449a)/endothelial nitric oxide synthase (eNOS) and circ-100290/miR-449a/vascular endothelial growth factor A (VEGFA) axes were predicted by a bioinformatics method and subsequently verified by luciferase reporter assays in vitro. Gain- or loss-of-function assays were then performed using small interfering RNAs (siRNAs) targeting circ-100290, or a plasmid overexpressing circ-100290. As expected, downregulation of circ-100290 in HUVECs led to weakened tube formation and migration of HUVECs following hAMSC-CM treatment, along with decreased expression of eNOS and VEGFA. In contrast, upregulation of circ-100290 led to enhanced tube formation and migration of HUVECs following hAMSC-CM treatment, along with increased expression of eNOS and VEGFA. Furthermore, a miR-449a inhibitor could largely rescue the effect of circ-100290 silencing on HUVECs, whereas a miR-449a mimic could significantly rescue the effect of overexpressing circ-100290 on HUVECs. Functional assays using eNOS or VEGF receptor inhibitors indicated eNOS and VEGFA may be important targets of miR-449a. Finally, a Matrigel plug assay revealed weakened angiogenesis when circ-100290 was silenced in HUVECs, but enhanced angiogenesis when circ-100290 was overexpressed in vivo. Our results suggest that circ-100290 might function via miR-449a/eNOS and miR-449a/VEGFA axes in the pro-angiogenic role of hAMSC-CM on HUVECs.
Collapse
Affiliation(s)
- Zichun Tang
- Department of Stomatology, Tongling People's Hospital, Tongling, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Liping Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yijing Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Junling Tan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Siyu Zuo
- Nanjing Medical University, Department of Anatomy, Histology and Embryology, Nanjing, China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yuan
- Nanjing Medical University, Department of Anatomy, Histology and Embryology, Nanjing, China
| |
Collapse
|
44
|
He Y, Wang Y, Liu L, Liu S, Liang L, Chen Y, Zhu Z. Circular RNA circ_0006282 Contributes to the Progression of Gastric Cancer by Sponging miR-155 to Upregulate the Expression of FBXO22. Onco Targets Ther 2020; 13:1001-1010. [PMID: 32099403 PMCID: PMC6999548 DOI: 10.2147/ott.s228216] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background There is increasing evidence that circular RNAs (circRNAs) play an important role in human cancers. As a newly identified human circular RNA, circ_0006282 is abnormally expressed in several types of cancers and promotes the development of cancers. However, the expression and function of circ_0006282 in gastric cancer (GC) remain unclear. Methods The expression of circ_0006282 in cancer tissues and adjacent non-cancer tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR) method, and the relationship between circ_0006282 expression and clinicopathological parameters was analyzed. After knockdown of circ_0006282 by RNA interference in GC cells, CCK-8 assay, colony formation and transwell assays were conducted to examine the effects of circ_0006282 on GC cells. The influence of circ_0006282 on tumor growth in vivo was assessed in a xenograft model. Furthermore, regulatory relationship between circ_0006282, miR-155 and FBXO22 was detected by luciferase assay, qRT-PCR and Western blot. Results The expression of circ_0006282 in GC tissues was significantly higher than its adjacent non-cancer tissues and over-expression of circ_0006282 was associated with tumor size, lymph nodes metastasis and TNM stage, but no obvious links with other pathological parameters. Knockdown of circ_0006282 inhibited the proliferation and metastasis ability of GC cells in vitro and suppressed the tumor growth in vivo. Furthermore, mechanistic investigations suggested that circ_0006282 served as a competing endogenous RNA (ceRNA) of miR-155. Moreover, FBXO22 was identified as the functional target of miR-155 and down-expression of circ_0006282 inhibited FBXO22 expression. Rescue assays also demonstrated that the oncogenic function of circ_0006282 is partly attributed to its regulation on miR-155/FBXO22 axis. Conclusion Our findings indicated that over-expression of circ_0006282 down‑regulated miR-155 to activate the expression of FBXO22, thus promoting proliferation and metastasis of GC cells, which provides a promising therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Yiren He
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Yinfeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Shaojun Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Lichuan Liang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| | - Yinan Chen
- Department of Gastrointestinal Surgery, Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen 361000, People's Republic of China
| | - Zhiqiang Zhu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
45
|
Ji D, Chen GF, Wang JC, Ji SH, Wu XW, Lu XJ, Chen JL, Li JT. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Aging (Albany NY) 2020; 12:1643-1655. [PMID: 32003753 PMCID: PMC7053641 DOI: 10.18632/aging.102705] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Previous circular RNA (circRNA) microarray analyses have uncovered an abnormal expression of hsa_circ_0070963 in hepatic stellate cells (HSCs). However, the specific role of hsa_circ_0070963 in liver fibrosis remains unknown. Here, we show that hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Moreover, we demonstrated that hsa_circ_0070963 levels were reduced during liver fibrosis while restoring hsa_circ_0070963 levels abolished HSC activation, with a reduction in α-SMA and type I collagen levels both in vitro and in vivo. Furthermore, hsa_circ_0070963 overexpression suppressed both cell proliferation and the cell cycle of HSCs. MiR-223-3p was confirmed as a target of hsa_circ_0070963 and was shown to be involved in the effects of hsa_circ_0070963 on HSC activation. Furthermore, LEMD3 was confirmed as a target of miR-223-3p and was shown to be responsible for the activation of HSCs. The interactions between hsa_circ_0070963, miR-223-3p, and LEMD3 were validated via bioinformatic analysis, luciferase reporter assays, and rescue experiments. Collectively, hsa_circ_0070963 appeared to function as a miR-223-3p sponge that inhibited HSC activation in liver fibrosis via regulation of miR-223-3p and LEMD3. Therefore, hsa_circ_0070963 may serve as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Dong Ji
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Feng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Cheng Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Han Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing, China
| | - Xue-Wen Wu
- Department of Gastroenterology, Fengxian Hospital, Southern Medical University, Shanghai, China.,Department of Gastroenterology, Shanghai Sixth People's Hospital (South), Shanghai Jiaotong University, Shanghai, China
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Lian Chen
- Department of Gastroenterology, Fengxian Hospital, Southern Medical University, Shanghai, China.,Department of Gastroenterology, Shanghai Sixth People's Hospital (South), Shanghai Jiaotong University, Shanghai, China
| | - Jing-Tao Li
- Department of Liver Diseases, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
46
|
Li L, Zhang ZT. Hsa_circ_0086414 Might Be a Diagnostic Biomarker of Oral Squamous Cell Carcinoma. Med Sci Monit 2020; 26:e919383. [PMID: 31933490 PMCID: PMC6978993 DOI: 10.12659/msm.919383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Circular RNAs (circRNAs), a newly-discovered class of non-coding RNAs, have a significant role in the progression of cancers, but the effect of hsa_circ_0086414 in human oral squamous cell carcinoma (OSCC) is still unclear. Material/Methods The circRNAs expression profile in OSCC tissue samples was assessed by high-throughput sequencing. The hsa_circ_0086414 expression level in 55 paired OSCC tissue samples and 2 kinds of OSCC cells was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the correlation between the hsa_circ_0086414 expression and clinicopathological characteristics of individuals with OSCC was studied. We used receiver operating characteristic (ROC) curves to observe the hsa_circ_0086414 value of diagnosis in OSCC. The network of hsa_circ_0086414-miRNAs-mRNAs was constructed. Gene Ontology (GO), Disease Oncology (DO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out based on sequencing data and bioinformatics predictions. Results Hsa_circ_0086414 expression in OSCC tissue samples and OSCC cells was first discovered to be significantly downregulated compared with the adjacent healthy tissues (AHTs) and normal (HaCaT) cells, respectively. Moreover, its expression level was significantly correlated with stage in TNM, size of tumor, and lymph node metastasis. The area below the ROC curve was 0.749. Hsa_circ_0086414-miRNAs-mRNAs network analysis and GO, DO, and KEGG analyses all demonstrated that hsa_circ_0086414 is correlated with cancer progression to a certain extent. Conclusions We discovered that hsa_circ_0086414 might be an essential diagnostic biomarker in OSCC. Furthermore, hsa_circ_0086414 could be a target for OSCC therapy.
Collapse
Affiliation(s)
- Lin Li
- VIP Department, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Zhong-Ti Zhang
- VIP Department, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
47
|
Lin X, Huang C, Chen Z, Wang H, Zeng Y. CircRNA_100876 Is Upregulated in Gastric Cancer (GC) and Promotes the GC Cells' Growth, Migration and Invasion via miR-665/YAP1 Signaling. Front Genet 2020; 11:546275. [PMID: 33262782 PMCID: PMC7686782 DOI: 10.3389/fgene.2020.546275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate the biological function and relative mechanisms of circRNA_100876 in gastric cancer (GC). To this end, quantitative real-time polymerase chain reaction (RT-qPCR) was performed to examine the expression of circRNA_100876 and miR-665 in GC tissues and cells, and circRNA_100876 expression was depleted by the transfection of circ_100876-targeting siRNAs. CCK-8, flow cytometry, and Transwell assays were applied to examine GC cell cycle distribution, proliferation, apoptosis, migration, and invasion abilities. Proteins related to apoptosis and epithelial-mesenchymal transition (EMT) were detected by western blotting. Luciferase reporter assays were conducted to verify the direct target site between circRNA_100876 and miR-665. Our study confirmed that circRNA_100876 was highly expressed in GC lesions compared with the adjacent normal tissues (P < 0.001). High circRNA_100876 expression was negatively associated with survival outcome (P = 0.000). Furthermore, the down-regulation of circRNA_100876 could inhibit GC cell proliferation, invasion, and migration by suppressing the EMT pathway. Further study suggested that circRNA_100876 could act as a competing endogenous RNA by sequestering miR-665, and luciferase activity assay indicated that circRNA_100876 could bind directly with miR-665. Moreover, we found that Yes-associated protein 1 (YAP1) was the downstream target gene of miR-665, miR-665 knockdown could up-regulate YAP1 expression in MKN45 cells, and YAP1 knockdown could inhibit MKN45 cell proliferation, migration and invasion. Therefore, we demonstrated that circRNA_100876 over-expression in GC could promote GC tumor growth, migration and invasion and exert its effects through miR-665/YAP1 signaling.
Collapse
Affiliation(s)
- Xiaosheng Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Cong Huang
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhian Chen
- The First College of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huaiming Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Huaiming Wang,
| | - Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Yongming Zeng,
| |
Collapse
|
48
|
Hsa_circ_0006948 enhances cancer progression and epithelial-mesenchymal transition through the miR-490-3p/HMGA2 axis in esophageal squamous cell carcinoma. Aging (Albany NY) 2019; 11:11937-11954. [PMID: 31881015 PMCID: PMC6949050 DOI: 10.18632/aging.102519] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023]
Abstract
Increasing studies have indicated that circular RNAs (circRNAs) are important in cancer progression. However, few circRNAs associated with epithelial-mesenchymal transition (EMT) have been elucidated in esophageal squamous cell carcinoma (ESCC). In this study, we aimed to identify whether hsa_circ_0006948 promotes ESCC cell EMT and explore its biological mechanisms. We first screened circRNA expression profiles using a circRNA microarray, and found that the expression of a novel circRNA, hsa_circ_0006948, is increased in 153 ESCC tissues and cell lines compared with noncancerous tissues and cell lines. Additionally, high hsa_circ_0006948 levels were positively associated with lymphatic metastasis and poor prognosis. Functionally, the assays indicated that cell proliferation, migration and invasion were promoted by hsa_circ_0006948 both in vitro and in vivo. Furthermore, we analyzed the relationship between hsa_circ_0006948 and miR-490-3p through bioinformatics, luciferase reporter assays, RNA immunoprecipitation and qRT-PCR. We found that hsa_circ_0006948 could bind directly to miR-490-3p which targets the 3'UTR of the oncogene HMGA2 to induce EMT. In conclusion, hsa_circ_0006948 was overexpressed in ESCC tissues and promoted cancer progression, and it could induce EMT by enhancing HMGA2 by sponging miR-490-3p, suggesting that hsa_circ_0006948 could be a biomarker for ESCC.
Collapse
|
49
|
Wang X, Wang X, Li W, Zhang Q, Chen J, Chen T. Up-Regulation of hsa_circ_0000517 Predicts Adverse Prognosis of Hepatocellular Carcinoma. Front Oncol 2019; 9:1105. [PMID: 31750237 PMCID: PMC6842961 DOI: 10.3389/fonc.2019.01105] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Although huge progress has been made in therapeutics against hepatocellular carcinoma (HCC) over the decades, the prognosis of this lethal disease remains poor. To find out risk factors for HCC-related outcome and better predict the prognosis, there is an unmet need to identify novel biomarkers of HCC. Accumulating evidence suggests that circRNAs play pivotal roles in carcinogenesis of several malignancies. In this study, we analyzed two datasets (GSE 94508 and GSE 97332) to examine differentially expressed circRNAs markedly related to HCC pathogenesis. Using Limma package in R and WGCNA analysis, hsa_circ_0000517 was significantly up-regulated in HCC (adjusted P < 0.01). Thereafter, a hsa_circ_0000517-related regulatory network was built based on application of databases including CSCD, TargetScan, miRDB, and miRTarBase. We uncovered the potential function of hsa_circ_0000517 through bioinformatics approaches, such as PPI network, GO, and KEGG pathway analyses. Specifically, functional analysis unveiled that hsa_circ_0000517 was likely to regulate the MAPK and Ras pathway through sponging several miRNAs and having an impact on the expression of TP53, MYC, and AKT1. To verify our initial finding, the expression of hsa_circ_0000517 in 60 HCC patients was detected by qRT-PCR and the expression in cancer tissues was higher compared with the paracarcinoma tissues. Survival analysis suggests high hsa_circ_0000517 expression was associated with adverse prognosis in HCC patients. Furthermore, this circRNA was significantly up-regulated in worse TNM stage, consistent with the progressive-stage-specific characteristic of circRNAs. A prognostic nomogram built on AFP and has_circ_0000517 showed significant diagnostic value. In all, we concluded that hsa_circ_0000517, a promising molecular in underlying mechanism of HCC, is a potent valuable biomarker for prognosis prediction.
Collapse
Affiliation(s)
- Xicheng Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xining Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Internal Infection, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Ma X, Liu C, Gao C, Li J, Zhuang J, Liu L, Li H, Wang X, Zhang X, Dong S, Zhou C, Sun C. circRNA-associated ceRNA network construction reveals the circRNAs involved in the progression and prognosis of breast cancer. J Cell Physiol 2019; 235:3973-3983. [PMID: 31617204 DOI: 10.1002/jcp.29291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
Recently, increasing evidences show that circular RNAs (circRNAs) are important regulators of various diseases, especially cancer. However, the regulatory role and the potential mechanism of action of circRNAs in breast cancer remain largely unknown. In this study, weighted gene co-expression network analysis was conducted with the differentially expressed miRNAs and mRNAs in breast cancer from The Cancer Genome Atlas database to identify the key modules associated with the carcinogenesis of breast cancer. In the significant turquoise and brown modules, 22 miRNAs and 1877 mRNAs were identified, respectively. Then, We compared and predicted the target genes and performed survival analysis to identify the miRNAs and mRNAs related to the prognosis of breast cancer. A circRNA-related competitive endogenous RNA network was identified by database co-screening, and deleted in liver cancer 1 (DLC1) was identified as a key gene. Finally, to assess how genes in key modules and key genes contribute to the development of breast cancer, relevant pathway information was obtained through DAVID and Gene Set Enrichment Analysis. These data demonstrated that three circRNAs (hsa-circ-0083373, hsa-circ-0083374, and hsa-circ-0083375) that regulate DLC1 expression via hsa-mir-511 and are involved in the pathogenesis and development of breast cancer.
Collapse
Affiliation(s)
- Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xue Wang
- College of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiaoming Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shixia Dong
- Clinical Medical Colleges, Weifang Medical University, Weifang, Shandong, China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China
| | - Changgang Sun
- Department of Basic Medical Science, Qingdao University, Qingdao, 266071, China.,Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|