1
|
Waki Y, Saito Y, Chen S, Ikemoto T, Noma T, Teraoku H, Yamada S, Morine Y, Shimada M. Effects of green light-emitting diode irradiation on hepatic differentiation of hepatocyte-like cells generated from human adipose-derived mesenchymal cells. Sci Rep 2023; 13:19954. [PMID: 37968291 PMCID: PMC10651838 DOI: 10.1038/s41598-023-45967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Light-emitting diode (LED) irradiation has been used in the differentiation of mesenchymal stem cells into a variety of cell types. This study investigated the effect of green LED (GLED) irradiation on the differentiation of adipocyte-derived mesenchymal cells into hepatocyte-like cells (HLCs) and the mechanism of its action. HLCs in the hepatocyte maturation phase were irradiated with GLED (520 nm, 21 W/m2, 5 min/day for 10 days). The cells were then assessed for expression of hepatocyte maturity genes and opsin 3 (OPN3), hepatocyte function, viability, apoptosis, and levels of reactive oxygen species (ROS), intracellular adenosine triphosphate (ATP) and calcium ions (Ca2+). GLED irradiation increased Alpha-1 antitrypsin and Ornithine transcarbamylase gene expression, promoted Cytochrome P450 3A4 activity and urea synthesis, and elevated intracellular ROS, ATP and Ca2+ levels. OPN3 expression was significantly more upregulated in GLED-irradiated HLCs than in the non-irradiated HLCs. No significant difference in cell viability or apoptosis was observed between GLED-irradiated and non-irradiated HLCs. GLED irradiation can promote hepatocyte maturation and functions through OPN3. GLED irradiation also stimulated mitochondrial function via Ca2+/ATP/ROS activation. GLED irradiation has potential to support cell-based transplantation in patients.
Collapse
Affiliation(s)
- Yuhei Waki
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Shuhai Chen
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Takayuki Noma
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroki Teraoku
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
2
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
3
|
Wu Y, Zhu T, Yang Y, Gao H, Shu C, Chen Q, Yang J, Luo X, Wang Y. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021; 36:1535-1543. [PMID: 33719020 DOI: 10.1007/s10103-021-03278-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). PDLSCs were derived from human periodontal ligament tissues of premolars and were irradiated with 0 (control group), 1, 3, or 5 J/cm2 red LED in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reaction (RT-PCR) results. Osteoblast-associated proteins (Runx2, OCN, OPN, and BSP) were detected using western blotting. The results of the MTT assay indicated that PDLSCs in the irradiation groups exhibited a higher proliferation rate than those in the control group (P < 0.05). ALP results showed that after 7 days of illumination, only 5 J/cm2 promoted the expression of ALP of PDLSCs. However, after 14 days of illumination, the irradiation treatments did not increase ALP activity. The results of alizarin red staining showed that red LED promoted osteogenic differentiation of the PDLSCs. The real-time polymerase chain reaction (RT-PCR) results demonstrated that red LED upregulated the expression levels of osteogenic genes. Expression of the proteins BSP, OPN, OCN, and Runx2 in the irradiation groups was higher than that in the control group. Our results confirmed that low-energy red LED at 1, 3, and 5 J/cm2 promotes proliferation and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Wu
- Southwest Medical University, Lu Zhou, 646000, China.,West China-Guang'an Hospital, Sichuan University, Guang'an, 638550, China
| | - Tingting Zhu
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Yaoyao Yang
- Hospital/School of Stomatology, Zunyi Medical University, Zun Yi, 563000, China
| | - Hong Gao
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Chunxia Shu
- Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- Southwest Medical University, Lu Zhou, 646000, China
| | - Juan Yang
- Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- Hospital of Stomatology, Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
4
|
Chang LY, Fan SMY, Liao YC, Wang WH, Chen YJ, Lin SJ. Proteomic Analysis Reveals Anti-Fibrotic Effects of Blue Light Photobiomodulation on Fibroblasts. Lasers Surg Med 2019; 52:358-372. [PMID: 31321797 DOI: 10.1002/lsm.23137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES This study was aimed at determining the effects of blue light photobiomodulation on primary adult mouse dermal fibroblasts (AMDFs) and the associated signaling pathways. STUDY DESIGN/MATERIALS AND METHODS Cultured AMDFs from adult C57BL/6 mice were irradiated by blue light from a light-emitting diode (wavelength = 463 ± 50 nm; irradiance = 5 mW/cm2 ; energy density = 4-8 J/cm2 ). The cells were analyzed using mass spectrometry for proteomics/phosphoproteomics, AlamarBlue assay for mitochondrial activity, time-lapse video for cell migration, quantitative polymerase chain reaction for gene expression, and immunofluorescence for protein expression. RESULTS Proteomic/phosphoproteomic analysis showed inhibition of extracellular signal-regulated kinases/mammalian target of rapamycin and casein kinase 2 pathways, cell motility-related networks, and multiple metabolic processes, including carbon metabolism, biosynthesis of amino acid, glycolysis/gluconeogenesis, and the pentose phosphate pathway. Functional analysis demonstrated inhibition of mitochondrial activities, cell migration, and mitosis. Expression of growth promoting insulin-like growth factor 1 and fibrosis-related genes, including transforming growth factor β1 (TGFβ1) and collagen type 1 ɑ2 chain diminished. Protein expression of α-smooth muscle actin, an important regulator of myofibroblast functions, was also suppressed. CONCLUSIONS Low-level blue light exerted suppressive effects on AMDFs, including suppression of mitochondrial activity, metabolism, cell motility, proliferation, TGFβ1 levels, and collagen I production. Low-level blue light can be a potential treatment for the prevention and reduction of tissue fibrosis, such as hypertrophic scar and keloids. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lo-Yu Chang
- School of Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yen-Chen Liao
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei 115, Taiwan
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.,Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei 115, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan.,Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 100, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
5
|
Sommer AP. Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light-it is mitochondrial bound water: the principles of low-level light therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S13. [PMID: 31032294 DOI: 10.21037/atm.2019.01.43] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Silva ES, Machado GB, Lino-Dos-Santos-Franco A, Pavani C. Combination of Natural Extracts and Photobiomodulation in Keratinocytes Subjected to UVA Radiation. Photochem Photobiol 2018; 95:644-649. [PMID: 30267581 DOI: 10.1111/php.13026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
Abstract
Natural extracts (NE) with antioxidant properties can minimize the effects of photoaging. Photobiomodulation (PBM) has proven to be a useful tool for the modulation of cell metabolism. Here, we investigate the associations of antioxidants with PBM with the aim of promoting skin rejuvenation. We began with standardization of the experimental protocol. Extracts of chamomile, rosemary, blueberry, green tea, figs, pomegranate and nutwood were tested. A custom irradiation system (366 ± 10 nm) was used to simulate sun exposure. A light emitting diode system (640 ± 12.5 nm) was used for PBM. Viability assessments were performed by the (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) MTT assay method. Based on the results, radiant exposure to UVA was defined as 9 and 1 J cm-2 for PBM. Extract concentrations were established on the basis of dark toxicities, which ranged from 0.01% to 0.3%. The data show that PBM is a promising therapy to restore keratinocytes after UVA damage; however, the detailed mechanism and effects require further exploration. Moreover, although the combination of PBM with NE may be a useful strategy, the choice of a NE is challenging, since the working concentration and other properties, such as photosensitivity, may bring about unwanted results.
Collapse
Affiliation(s)
- Elineides Santos Silva
- Post Graduate Program of Biophotonics Applied to Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | - Gabriela Benedito Machado
- Post Graduate Program of Biophotonics Applied to Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program of Biophotonics Applied to Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| | - Christiane Pavani
- Post Graduate Program of Biophotonics Applied to Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|