1
|
Terashima T, Harada K, Yamashita T. Diagnosis, clinical characteristics, and treatment of combined hepatocellular-cholangiocarcinoma. Jpn J Clin Oncol 2025; 55:327-333. [PMID: 39936601 DOI: 10.1093/jjco/hyaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The concept and definition of combined hepatocellular-cholangiocarcinoma (cHCC-CCA), an extremely rare condition accounting for only 1% of all primary liver cancers, has shifted in recent years. The latest World Health Organization Classification (fifth edition) includes two types of cHCC-CCAs, (i) the classical type described in the previous edition, which contains a mixture of distinctly differentiated components of both hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) and (ii) intermediate cell carcinoma wherein all cells comprising the tumor express both hepatocellular and cholangiocellular features. However, the pathogenesis of cHCC-CCA, including its origins, remains controversial even among experts. Treatment strategies for cHCC-CCA in clinical practice have been determined based on imaging findings, tumor markers, and pathologically predominant tumor components for either HCC or ICC, suggesting that cHCC-CCA has yet to be been established as an independent disease entity. As with HCC and ICC, the treatment strategy for HCC-CCA involves initially considering resectability. Although systemic therapy has been considered for patients unsuitable for local treatment, no prospective clinical trials have evaluated the efficacy and safety of systemic therapy for cHCC-CCA, which could explain the lack of a standard of care. In recent years, however, studies have demonstrated the efficacy of immune checkpoint inhibitors for HCC and ICC, with therapeutic results having been reported for cHCC-CCA. Hence, further accumulation of cases is expected to facilitate the establishment of a consensus on treatment strategies in the near future.
Collapse
Affiliation(s)
- Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
2
|
Li Y, He D, Lu ZJ, Gu XF, Liu XY, Chen M, Tu YX, Zhou Y, Owen G, Zhang X, Jiang D. Clinicopathological characteristics and prognosis of combined hepatocellular cholangiocarcinoma. BMC Cancer 2024; 24:1232. [PMID: 39375615 PMCID: PMC11457400 DOI: 10.1186/s12885-024-12970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
There is limited research on the clinicopathological characteristics of combined hepatocellular-cholangiocarcinoma (cHCC-CCA) currently. The aim of this study is to summerize the clinicopathological factors and prognosis of cHCC-CCA, which could help us understand this disease. 72 cases of cHCC-CCA from West China Hospital of Sichuan University were collected. Tissue components were reviewed by pathologists. Immunohistochemistry was used to detect the status of mismatch repair (MMR) and human epidermal growth factor receptor 2 (HER2) in cHCC-CCA, as well as the quantity and distribution of CD3+ T cells and CD8+ T cells. Fluorescence in situ hybridization was used to detect fibroblast growth factor receptor 2 (FGFR2) gene alteration. COX univariate and multivariate analyses were used to evaluate risk factors, and survival curves were plotted. 49 cases were classified as classic type cHCC-CCA and 23 cases as intermediate cell carcinoma. The cut-off value for diagnosing classic type was determined to be ≥ 30% for the cholangiocarcinoma component based on prognostic calculations. All tumors were MMR proficient. The rate of strong HER2 protein expression (3+) was 8.3%, and the frequency of FGFR2 gene alteration was 26.4%. CD3+ T cells and CD8+ T cells were mainly distributed at the tumor margin, and were protective factors for patients with cHCC-CCA. The overall survival of the 72 patients was 18.9 months, with a median survival of 12 months. Tumor size, TNM stage, and serum AFP level were prognostic factors for cHCC-CCA. The proportion of cholangiocarcinoma component reaching the threshold of 30%, may provide a reference for future pathology diagnosis. FGFR2 gene alteration was 26.4%, providing a clue for anti-FGFR2 therapy. However, more data is needed for further verification.
Collapse
Affiliation(s)
- Yue Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Jian Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia-Fei Gu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Yu Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin-Xia Tu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pathology, Chengdu Shangjin Nanfu Hospital, Chengdu, 611700, China
| | - Yu Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gemma Owen
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Xian Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pathology, Chengdu Shangjin Nanfu Hospital, Chengdu, 611700, China.
| |
Collapse
|
3
|
Haruna T, Kudo M, Ishino K, Ueda J, Shintani-Domoto Y, Yoshimori D, Fuji T, Kawamoto Y, Teduka K, Kitamura T, Yoshida H, Ohashi R. Molecular biological role of epithelial splicing regulatory protein 1 in intrahepatic cholangiocarcinoma. Hepatol Res 2024. [PMID: 39037743 DOI: 10.1111/hepr.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
AIM Epithelial splicing regulatory protein 1 (ESRP1) regulates tumor progression and metastasis through the epithelial‒mesenchymal transition by interacting with zinc finger E-box binding 1 (ZEB1) and CD44 in cancers. However, the role of ESRP1 in intrahepatic cholangiocarcinoma (iCCA) remains unclear. METHODS Three iCCA cell lines (HuCCT-1, SSP-25, and KKU-100) were analyzed using small interfering RNA to investigate the molecular biological functions of ESRP1 and ZEB1. The association between clinicopathological features and the expression of ESRP1 and ZEB1 in iCCA tissues was analyzed immunohistochemically. Proteomic analysis was performed to identify molecules related to ESRP1 expression. RESULTS ESRP1 expression was upregulated in HuCCT-1 and SSP-25 cells. Cell migration and invasion were enhanced, and the expression of ZEB1 and CD44s (CD44 standard) isoforms were upregulated in the ESRP1 silencing cells. Moreover, ESRP1 silencing increased the expression of N-cadherin and vimentin, indicating the presence of mesenchymal properties. Conversely, ZEB1 silencing increased the expression of ESRP1 and CD44v (CD44 variant) isoforms. Immunohistochemical analysis revealed that a lower ESRP1-to-ZEB1 expression ratio was associated with poor recurrence-free survival in patients with iCCA. Flotillin 2, a lipid raft marker related to epithelial‒mesenchymal transition, was identified as a protein related to the interactive feedback loop in proteomic analysis. CONCLUSIONS ESRP1 suppresses tumor progression in iCCA by interacting with ZEB1 and CD44 to regulate epithelial‒mesenchymal transition.
Collapse
Affiliation(s)
- Takahiro Haruna
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Junji Ueda
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | | | - Daigo Yoshimori
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Takenori Fuji
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoko Kawamoto
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kiyoshi Teduka
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Taeko Kitamura
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal Hepato-Biliary-Pancreatic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
4
|
Zhang YZ, Liu YC, Su T, Shi JN, Huang Y, Liang B. Current advances and future directions in combined hepatocellular and cholangiocarcinoma. Gastroenterol Rep (Oxf) 2024; 12:goae031. [PMID: 38628397 PMCID: PMC11018545 DOI: 10.1093/gastro/goae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
The low incidence of combined hepatocellular cholangiocarcinoma (cHCC-CCA) is an important factor limiting research progression. Our study extensively included nearly three decades of relevant literature and assembled the most comprehensive database comprising 5,742 patients with cHCC-CCA. We summarized the characteristics, tumor markers, and clinical features of these patients. Additionally, we present the evolution of cHCC-CCA classification and explain the underlying rationale for these classification standards. We reviewed cHCC-CCA diagnostic advances using imaging features, tumor markers, and postoperative pathology, as well as treatment options such as surgical, adjuvant, and immune-targeted therapies. In addition, recent advances in more effective chemotherapeutic regimens and immune-targeted therapies were explored. Furthermore, we described the molecular mutation features and potential specific markers of cHCC-CCA. The prognostic value of Nestin has been proven, and we speculate that Nestin will also play a role in classification and diagnosis. However, further research is needed. Moreover, we believe that the possibility of using machine learning liquid biopsy for preoperative diagnosis and establishing a scoring system are directions for future research.
Collapse
Affiliation(s)
- Yu-Zhu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Yu-Chen Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Tong Su
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Jiang-Nan Shi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Yi Huang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, Jiangxi, P. R. China
| |
Collapse
|