1
|
Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, Daralioti T, Perracchio L, Sacconi A, Pasanisi P, Muti P, Pulito C, Strano S, Ianniello Z, Fatica A, Forcato M, Fazi F, Blandino G, Fontemaggi G. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol 2022; 5:598. [PMID: 35710947 PMCID: PMC9203778 DOI: 10.1038/s42003-022-03539-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells. The circular isoform of VEGFA mRNA (circ_0076611), associated with size and pathogenesis of triple-negative breast tumors, is produced via back splicing of exon-7 by a RNP complex comprising lncRNA-MALAT1, ID4 and SRSF1, and secreted through exosomes.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriella Esposito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Frauke Goeman
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Pasanisi
- Unit of Epidemiology and Prevention, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Muti
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biomedical, Surgical and Dental Sciences, "Università degli Studi di Milano", Milan, Italy
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
2
|
Cancer-Testis Antigens in Triple-Negative Breast Cancer: Role and Potential Utility in Clinical Practice. Cancers (Basel) 2021; 13:cancers13153875. [PMID: 34359776 PMCID: PMC8345750 DOI: 10.3390/cancers13153875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer cells commonly express tumour-associated antigens that can induce immune responses to eradicate the tumour. Triple-negative breast cancer (TNBC) is a form of breast cancer lacking the expression of hormone receptors and cerbB2 (HER2) and tends to be more aggressive and associated with poorer prognoses due to the limited treatment options. Characterisation of biomarkers or treatment targets is thus of great significance in revealing additional therapeutic options. Cancer-testis antigens (CTAs) are tumour-associated antigens that have garnered strong attention as potential clinical biomarkers in targeted immunotherapy due to their cancer-restricted expressions and robust immunogenicity. Previous clinical studies reported that CTAs correlated with negative hormonal status, advanced tumour behaviour and a poor prognosis in a variety of cancers. Various studies also demonstrated the oncogenic potential of CTAs in cell proliferation by inhibiting cell death and inducing metastasis. Multiple clinical trials are in progress to evaluate the role of CTAs as treatment targets in various cancers. CTAs hold great promise as potential treatment targets and biomarkers in cancer, and further research could be conducted on elucidating the mechanism of actions of CTAs in breast cancer or combination therapy with other immune modulators. In the current review, we summarise the current understandings of CTAs in TNBC, addressing the role and utility of CTAs in TNBC, as well as discussing the potential applications and advantage of incorporating CTAs in clinical practise.
Collapse
|
3
|
Garcia-Escolano M, Montoyo-Pujol YG, Ortiz-Martinez F, Ponce JJ, Delgado-Garcia S, Martin TA, Ballester H, Aranda FI, Castellon-Molla E, Sempere-Ortells JM, Peiro G. ID1 and ID4 Are Biomarkers of Tumor Aggressiveness and Poor Outcome in Immunophenotypes of Breast Cancer. Cancers (Basel) 2021; 13:cancers13030492. [PMID: 33514024 PMCID: PMC7865969 DOI: 10.3390/cancers13030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Inhibitor of differentiation (ID) proteins are essential to promote proliferation during embryonic development, but they are silenced in most adult tissues. Evidence to date shows ID1 expression in many tumor types, including breast cancer. However, the role of the remaining ID family members, especially ID4, in breast cancer remains unclear. In this work, we aimed to assess the four ID genes expression in breast cancer cell lines and a long series of breast cancer samples and correlate them with clinicopathological features and patients’ survival. We observed a significantly higher expression of ID4 in tumor cell lines than the healthy breast epithelium cell line. We confirmed that the overexpression of ID1 and ID4 correlated with more aggressive phenotypes and poor survival in breast cancer patients’ samples. Our results support the importance of ID proteins as targets for the development of anti-cancer drugs. Abstract Inhibitor of differentiation (ID) proteins are a family of transcription factors that contribute to maintaining proliferation during embryogenesis as they avoid cell differentiation. Afterward, their expression is mainly silenced, but their reactivation and contribution to tumor development have been suggested. In breast cancer (BC), the overexpression of ID1 has been previously described. However, whether the remaining ID genes have a specific role in this neoplasia is still unclear. We studied the mRNA expression of all ID genes by q RT-PCR in BC cell lines and 307 breast carcinomas, including all BC subtypes. Our results showed that ID genes are highly expressed in all cell lines tested. However, ID4 presented higher expression in BC cell lines compared to a healthy breast epithelium cell line. In accordance, ID1 and ID4 were predominantly overexpressed in Triple-Negative and HER2-enriched samples. Moreover, high levels of both genes were associated with larger tumor size, histological grade 3, necrosis and vascular invasion, and poorer patients’ outcomes. In conclusion, ID1 and ID4 may act as biomarkers of tumor aggressiveness and worse prognosis in breast cancer, and they could be used as potential targets for new treatments discover.
Collapse
Affiliation(s)
- Marta Garcia-Escolano
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Correspondence: ; Tel.: +34-965-913953 (ext. 3952)
| | - Yoel G. Montoyo-Pujol
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Fernando Ortiz-Martinez
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
| | - Jose J. Ponce
- Medical Oncology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain;
| | - Silvia Delgado-Garcia
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Tina A. Martin
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (S.D.-G.); (T.A.M.); (H.B.)
| | - F. Ignacio Aranda
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - Elena Castellon-Molla
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| | - J. Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n. 03080-San Vicente del Raspeig, 03010 Alicante, Spain;
| | - Gloria Peiro
- Research Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (Y.G.M.-P.); (F.O.-M.); (G.P.)
- Pathology Department, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; (F.I.A.); (E.C.-M.)
| |
Collapse
|
4
|
Lu X, Shao L, Qian Y, Zhang Y, Wang Y, Miao L, Zhuang Z. Prognostic effects of the expression of inhibitor of DNA-binding family members on patients with lung adenocarcinoma. Oncol Lett 2020; 20:143. [PMID: 32934711 PMCID: PMC7471671 DOI: 10.3892/ol.2020.12004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are negatively regulated by inhibitor of DNA-binding (ID) proteins. Several studies have demonstrated that ID family proteins are dysregulated in a variety of cancer types, including in lung adenocarcinoma (LUAD). In current study, the prognostic value of ID family members was evaluated by investigating publicly accessible databases, including Oncomine, Kaplan-Meier plotter, UALCAN and the Human Protein Atlas. It was observed that the mRNA expression of all ID members was downregulated in LUAD tumor tissues compared with those in normal tissues according to the Oncomine and UALCAN databases. Additionally, increased mRNA expression levels of ID2 and ID1 were associated with improved and poorer survival time, respectively. Notably, ID3 and ID4 expression was not associated with survival in patients with LUAD. At the protein level, high ID2 significantly predicted an improved survival outcome while high ID1 is associated with shorter survival time. Thus, the results indicate that the ID proteins, particularly ID2, exhibit significant prognostic value in LUAD. More studies are required to elucidate the underlying molecular mechanisms behind the role of the ID family in the development of LUAD.
Collapse
Affiliation(s)
- Xiaomin Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu 226601, P.R. China
| | - Lili Shao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Ye Qian
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu 226601, P.R. China
| | - Yan Zhang
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu 226601, P.R. China
| | - Yongsheng Wang
- Department of Respiratory Diseases, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Liyun Miao
- Department of Respiratory Diseases, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
5
|
Baker LA, Holliday H, Roden D, Krisp C, Wu SZ, Junankar S, Serandour AA, Mohammed H, Nair R, Sankaranarayanan G, Law AMK, McFarland A, Simpson PT, Lakhani S, Dodson E, Selinger C, Anderson L, Samimi G, Hacker NF, Lim E, Ormandy CJ, Naylor MJ, Simpson K, Nikolic I, O'Toole S, Kaplan W, Cowley MJ, Carroll JS, Molloy M, Swarbrick A. Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Res 2020; 22:63. [PMID: 32527287 PMCID: PMC7291584 DOI: 10.1186/s13058-020-01306-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- Mass Spectrometric Proteome Analysis, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Aurelien A Serandour
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hisham Mohammed
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Radhika Nair
- Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Geetha Sankaranarayanan
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew M K Law
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Peter T Simpson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sunil Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, , Brisbane, QLD, Australia
| | - Eoin Dodson
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christina Selinger
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Goli Samimi
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Neville F Hacker
- School of Women's and Children's Health, University of New South Wales, and Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, NSW, Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher J Ormandy
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Matthew J Naylor
- School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kaylene Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sandra O'Toole
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Warren Kaplan
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mark Molloy
- Australian Proteome Analysis Facility (APAF), Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Zhang X, Gu G, Song L, Wang D, Xu Y, Yang S, Xu B, Cao Z, Liu C, Zhao C, Zong Y, Qin Y, Xu J. ID4 Promotes Breast Cancer Chemotherapy Resistance via CBF1-MRP1 Pathway. J Cancer 2020; 11:3846-3857. [PMID: 32328189 PMCID: PMC7171490 DOI: 10.7150/jca.31988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-resistance is considered a key problem in triple negative breast cancer (TNBC) chemotherapy and as such, an urgent need exists to identify its exact mechanisms. Inhibitor of DNA binding factor 4 (ID4) was reported to play diverse roles in different breast cancer molecular phenotypes. In addition, ID4 was associated with mammary carcinoma drug resistance however its functions and contributions remain insufficiently defined. The expression of ID4 in MCF-7, MCF-7/Adr and MDA-MB-231 breast cancer cell lines and patients' tissues were detected by RT-PCR, western blot and immunohistochemistry. Furthermore, TCGA database was applied to confirm these results. Edu and CCK8 assay were performed to detect the proliferation and drug resistance in breast cancer cell lines. Transwell and scratch migration assay were used to detected metastasis. Western blot, TCGA database, Immunoprecipitation (IP), Chromatin Immunoprecipitation (ChIP) and Luciferase reporter assay were used to investigate the tumor promotion mechanisms of ID4. In this study, we report that the expression levels of ID4 appeared to correlate with breast cancers subtype differentiation biomarkers (including ER, PR) and chemo-resistance related proteins (including MRP1, ABCG2, P-gp). Down-regulation of ID4 in MCF-7/Adr and MDA-MB-231 breast cancer cell lines significantly suppressed cell proliferation and invasion, however enhanced Adriamycin sensitivity. We further demonstrated that the oncogenic and chemo-resistant effects of ID4 could be mediated by binding to CBF1 promoter region though combination with MyoD1, and then the downstream target MRP1 could be activated. We reveal for the first time that ID4 performs its function via a CBF1-MRP1 signaling axis, and this finding provides a novel perspective to find potential therapeutic targets for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Guangyan Gu
- Department of Histology and Embryology, Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong, China
| | - Lin Song
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Dan Wang
- Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Bin Xu
- Department of Pathology, Shengli Oil Field Central Hospital, Dongying, Shandong Province, 257034, P.R China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunmei Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunming Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| |
Collapse
|
7
|
Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, Lamy PJ, Guiu S. BRCA1 Promoter Hypermethylation is Associated with Good Prognosis and Chemosensitivity in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12040828. [PMID: 32235500 PMCID: PMC7225997 DOI: 10.3390/cancers12040828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aberrant hypermethylation of BRCA1 promoter CpG islands induces the decreased expression of BRCA1 (Breast Cancer 1) protein. It can be detected in sporadic breast cancer without BRCA1 pathogenic variants, particularly in triple-negative breast cancers (TNBC). We investigated BRCA1 hypermethylation status (by methylation-specific polymerase chain reaction (MS-PCR) and MassARRAY® assays), and BRCA1 protein expression using immunohistochemistry (IHC), and their clinicopathological significance in 248 chemotherapy-naïve TNBC samples. Fifty-five tumors (22%) exhibited BRCA1 promoter hypermethylation, with a high concordance rate between MS-PCR and MassARRAY® results. Promoter hypermethylation was associated with reduced IHC BRCA1 protein expression (p = 0.005), and expression of Programmed death-ligand 1 protein (PD-L1) by tumor and immune cells (p = 0.03 and 0.011, respectively). A trend was found between promoter hypermethylation and basal marker staining (p = 0.058), and between BRCA1 expression and a basal-like phenotype. In multivariate analysis, relapse-free survival was significantly associated with N stage, adjuvant chemotherapy, and histological subtype. Overall survival was significantly associated with T and N stage, histology, and adjuvant chemotherapy. In addition, patients with tumors harboring BRCA1 promoter hypermethylation derived the most benefit from adjuvant chemotherapy. In conclusion, BRCA1 promoter hypermethylation is associated with TNBC sensitivity to adjuvant chemotherapy, basal-like features and PD-L1 expression. BRCA1 IHC expression is not a good surrogate marker for promoter hypermethylation and is not independently associated with prognosis. Association between promoter hypermethylation and sensitivity to Poly(ADP-ribose) polymerase PARP inhibitors needs to be evaluated in a specific series of patients.
Collapse
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Faculty of Medicine, Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Correspondence: ; Tel.: +33-4-67-61-31-00; Fax: +33-4-67-63-28-73
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Caroline Mollevi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Biometrics Unit, Institut du Cancer Montpellier (ICM), Université de Montpellier, 208 rue des Apothicaires, F-34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Joelle Simony-Lafontaine
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Alexandre Ho-Pun-Cheung
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Elodie Chartron
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Antoinette Lemoine
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Raphael Saffroy
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Pierre-Jean Lamy
- Institut d’Analyse Génomique, Imagenome-Inovie, Clinique BeauSoleil, 34070 Montpellier, France;
- Biological Resources Center, Montpellier Cancer Institute Val d’Aurelle, F-34298 Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| |
Collapse
|
8
|
Donzelli S, Sacconi A, Turco C, Gallo E, Milano E, Iosue I, Blandino G, Fazi F, Fontemaggi G. Paracrine Signaling from Breast Cancer Cells Causes Activation of ID4 Expression in Tumor-Associated Macrophages. Cells 2020; 9:cells9020418. [PMID: 32054109 PMCID: PMC7072237 DOI: 10.3390/cells9020418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs) constitute a major portion of the leukocyte infiltrate found in breast cancer (BC). BC cells may reprogram TAMs in a pro-angiogenic and immunosuppressive sense. We previously showed that high expression of the ID4 protein in triple-negative BC cells leads to the induction of a proangiogenic program in TAMs also through the downregulation of miR-107. Here, we investigated the expression and function of the ID4 protein in TAMs. Methods: Human macrophages obtained from peripheral blood-derived monocytes (PBDM) and mouse RAW264.7 cells were used as macrophage experimental systems. ID4-correlated mRNAs of the TCGA and E-GEOD-18295 datasets were analyzed. Results: We observed that BC cells determine a paracrine induction of ID4 expression and activation of the ID4 promoter in neighboring macrophages. Interestingly, ID4 expression is higher in macrophages associated with invasive tumor cells compared to general TAMs, and ID4-correlated mRNAs are involved in various pathways that were previously reported as relevant for TAM functions. Selective depletion of ID4 expression in macrophages enabled validation of the ability of ID4 to control the expression of YAP1 and of its downstream targets CTGF and CYR61. Conclusion: Collectively, our results show that activation of ID4 expression in TAMs is observed as a consequence of BC cell paracrine activity and could participate in macrophage reprogramming in BC.
Collapse
Affiliation(s)
- Sara Donzelli
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
| | - Andrea Sacconi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
| | - Chiara Turco
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
| | - Enzo Gallo
- IRCCS Regina Elena National Cancer Institute, Pathology Department, Via E. Chianesi, 53, 00144 Rome, Italy
| | - Elisa Milano
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161 Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
- Correspondence: (G.B.); (F.F.); (G.F.); Tel.: +390652662911 (G.B.); +390649766575 (F.F.); +390652662878 (G.F.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161 Rome, Italy
- Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
- Correspondence: (G.B.); (F.F.); (G.F.); Tel.: +390652662911 (G.B.); +390649766575 (F.F.); +390652662878 (G.F.)
| | - Giulia Fontemaggi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Unit, Via E. Chianesi, 53, 00144 Rome, Italy
- Correspondence: (G.B.); (F.F.); (G.F.); Tel.: +390652662911 (G.B.); +390649766575 (F.F.); +390652662878 (G.F.)
| |
Collapse
|
9
|
Goto Y, Thike AA, Ong CCH, Lim JX, Md Nasir ND, Li H, Koh VCY, Chen XY, Yeong JPS, Sasano H, Tan PH. Characteristics, behaviour and role of biomarkers in metastatic triple-negative breast cancer. J Clin Pathol 2019; 73:147-153. [PMID: 31563883 DOI: 10.1136/jclinpath-2019-206078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022]
Abstract
AIMS Characterising the factors responsible for metastatic triple-negative breast cancer (TNBC) is of significant importance, considering its high mortality rate and scant data. In this study, we evaluated the characteristics, clinical behaviour and role of biomarkers (androgen receptor (AR), oestrogen receptor beta (ERβ) and p53) in metastatic TNBC. METHODS Immunohistochemistry was performed for AR, ERβ and p53 on 125 primary TNBCs with known metastasis and correlated with clinicopathological parameters and outcome. AR and p53 mRNA profiling was also carried out on 34 tumours from the same series and correlated with outcomes. RESULTS In this cohort, grade 3 and pT2 tumours predominated. The most common site for metastasis was the lung and pleura (41, 32.8%), and 15 (12.0%) cases demonstrated metastasis in multiple sites. Among these, 92% of tumours metastasised without preceding local recurrences. Five- and ten-year overall survival (OS) rates were 27% and 7.2%, while 5- and 10- year survival rates after metastasis were 9.6% and 3.2% respectively. AR, ERβ and p53 protein expressions were observed in 16%, 96.8% and 58.1% of tumours, respectively. A combinational phenotype of AR-ERβ+p53+ tumours was associated with poorer OS (HR 1.543, 95%CI 1.030 to 2.310, p=0.035). Higher AR mRNA levels were significantly associated with favourable OS (p=0.015) and survival after metastasis (p=0.027). CONCLUSIONS Metastatic TNBC harboured aggressive behaviour and displayed predominantly visceral metastasis with most metastatic events occurring without intervening local recurrences. A combinational phenotype of AR-ERβ+p53+ was significantly associated with poorer OS.
Collapse
Affiliation(s)
- Yutaro Goto
- Anatomic Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | - Huihua Li
- Health Services Research Unit, Singapore General Hospital, Singapore, Singapore.,Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xiao-Yang Chen
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Anatomy, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Integrative Biology for Theranostics, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Hironobu Sasano
- Anatomic Pathology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Puay Hoon Tan
- Duke-NUS Medical School, Singapore, Singapore .,Anatomy, National University Singapore Yong Loo Lin School of Medicine, Singapore, Singapore.,Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
10
|
Zhou XL, Zeng D, Ye YH, Sun SM, Lu XF, Liang WQ, Chen CF, Lin HY. Prognostic values of the inhibitor of DNA‑binding family members in breast cancer. Oncol Rep 2018; 40:1897-1906. [PMID: 30066902 PMCID: PMC6111598 DOI: 10.3892/or.2018.6589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
The inhibitor of DNA‑binding (ID) proteins are dominant‑negative modulators of transcription factors with basic helix‑loop‑helix (bHLH) structures, which control a variety of genes in cell cycle regulation. An increasing volume of evidence has demonstrated that the deregulated expression of IDs in several types of malignancy, including breast carcinoma, has been proven to serve crucial regulatory functions in tumorigenesis and the development of breast cancer (BC). The present study evaluated the prognostic values of the ID family members by investigating a set of publicly accessible databases, including Oncomine, bc‑GenExMiner, Kaplan‑Meier plotter and the Human Protein Atlas. The results demonstrated that mRNA levels of distinct IDs exhibited diverse profiles between BC and normal counterparts. The mRNA expression level of ID2 was significantly higher in breast cancer than normal tissues, while the mRNA expression levels of ID1, ID3 and ID4 were significantly lower in breast cancer tissues than in normal tissues. Furthermore, higher mRNA expression levels of ID1 and ID4 were associated with subgroups with lower pathological grades and fewer lymph node metastases. Survival analysis revealed that elevated mRNA levels of ID1 and ID4 predicted an improved survival in all patients with BC. Increased ID1 mRNA levels were associated with higher relapse‑free survival rates in all patients with BC, particularly in those with ER positive and Luminal A subtype tumors. Increased ID4 mRNA expression predicted longer survival times in all patients with BC, particularly in those with hormone receptor‑positive tumors or those treated with endocrine therapy. These results indicated that IDs are essential prognostic indicators in BC. Future studies on the effect of IDs on the pathogenesis and development of BC are warranted.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - De Zeng
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Yan-Hong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Shu-Ming Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Xiao-Feng Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Wei-Quan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr Hao-Yu Lin, Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou, Guangdong 515000, P.R. China, E-mail:
| |
Collapse
|
11
|
Donzelli S, Milano E, Pruszko M, Sacconi A, Masciarelli S, Iosue I, Melucci E, Gallo E, Terrenato I, Mottolese M, Zylicz M, Zylicz A, Fazi F, Blandino G, Fontemaggi G. Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages. Breast Cancer Res 2018; 20:59. [PMID: 29921315 PMCID: PMC6009061 DOI: 10.1186/s13058-018-0990-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Background As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-0990-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Donzelli
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Elisa Milano
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Andrea Sacconi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy.,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Elisa Melucci
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Enzo Gallo
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- Biostatistics Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 16, 00161, Rome, Italy. .,Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
12
|
Wang GH, Zhao CM, Huang Y, Wang W, Zhang S, Wang X. BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers. Hum Pathol 2017; 71:135-144. [PMID: 29126833 DOI: 10.1016/j.humpath.2017.10.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/19/2023]
Abstract
The role of BRCA1 and BRCA2 genes is mainly to maintain genome integrity in response to DNA damage through different mechanisms. Deregulation of BRCA1 and BRCA2 is associated with the development of tumor and altered sensitivity to chemotherapeutic agents. In this study, we determined protein expression of BRCA1 and BRCA2 in 4 digestive system cancers (gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer) by immunohistochemistry on tissue microarrays. A total of 1546 samples of 4 types of cancer tissues, their matched adjacent nontumor tissues, and corresponding benign tissues were studied, respectively. Immunohistochemistry expression patterns of the 2 proteins and their correlation with patients' clinical parameters and overall survival were analyzed. The results showed that low expression of cytoplasmic BRCA1 and BRCA2 was commonly associated with advanced tumor-lymph node-metastasis stage, whereas high expression of nuclear BRCA1 was generally correlated with advanced tumor stages in these cancers. High expression of cytoplasmic BRCA1 and BRCA2 had significantly favorable overall survival in digestive system cancers; in contrast, BRCA1 nuclear expression usually predicted poor outcomes. We conclude that BRCA1 and BRCA2 could be used as clinicopathological biomarkers to evaluate the prognosis of digestive system cancers.
Collapse
Affiliation(s)
- Gui-Hua Wang
- Department of Laboratory Medicine, Department of Tissue Bank, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, Jiangsu, PR China, 226001
| | - Chun-Mei Zhao
- Department of Laboratory Medicine, Department of Tissue Bank, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, Jiangsu, PR China, 226001
| | - Ying Huang
- Department of Laboratory Medicine, Department of Tissue Bank, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, Jiangsu, PR China, 226001
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China, 226001
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China, 226001
| | - Xudong Wang
- Department of Laboratory Medicine, Department of Tissue Bank, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, Jiangsu, PR China, 226001.
| |
Collapse
|
13
|
Pruszko M, Milano E, Forcato M, Donzelli S, Ganci F, Di Agostino S, De Panfilis S, Fazi F, Bates DO, Bicciato S, Zylicz M, Zylicz A, Blandino G, Fontemaggi G. The mutant p53-ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Rep 2017; 18:1331-1351. [PMID: 28652379 PMCID: PMC5538427 DOI: 10.15252/embr.201643370] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
The abundant, nuclear-retained, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been associated with a poorly differentiated and aggressive phenotype of mammary carcinomas. This long non-coding RNA (lncRNA) localizes to nuclear speckles, where it interacts with a subset of splicing factors and modulates their activity. In this study, we demonstrate that oncogenic splicing factor SRSF1 bridges MALAT1 to mutant p53 and ID4 proteins in breast cancer cells. Mutant p53 and ID4 delocalize MALAT1 from nuclear speckles and favor its association with chromatin. This enables aberrant recruitment of MALAT1 on VEGFA pre-mRNA and modulation of VEGFA isoforms expression. Interestingly, VEGFA-dependent expression signatures associate with ID4 expression specifically in basal-like breast cancers carrying TP53 mutations. Our results highlight a key role for MALAT1 in control of VEGFA isoforms expression in breast cancer cells expressing gain-of-function mutant p53 and ID4 proteins.
Collapse
Affiliation(s)
- Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Elisa Milano
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Mattia Forcato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Simone De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - David O Bates
- Division of Cancer and Stem Cells, Cancer Biology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| |
Collapse
|
14
|
Baker LA, Holliday H, Swarbrick A. ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocr Relat Cancer 2016; 23:R381-92. [PMID: 27412917 DOI: 10.1530/erc-16-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Kim MC, Choi JE, Lee SJ, Bae YK. Coexistent Loss of the Expressions of BRCA1 and p53 Predicts Poor Prognosis in Triple-Negative Breast Cancer. Ann Surg Oncol 2016; 23:3524-3530. [PMID: 27278204 DOI: 10.1245/s10434-016-5307-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND To investigate the prognostic significance of altered breast cancer susceptibility gene 1 (BRCA1) and p53 expression in triple-negative breast cancer (TNBC). METHODS Immunohistochemical expression of BRCA1 and p53 was examined in the tumor tissues of 465 TNBC cases and relations were sought with clinicopathological features and patient survival. RESULTS Loss of BRCA1 expression was found in 29.5% (137/465) of TNBCs. Positive expression of p53 was observed in 49.9% (232/465). Patients with loss of BRCA1 expression had a tendency to have higher rate of lymph node metastasis (p = 0.075). An association between p53 expression and high histological grade was observed (p = 0.039). TNBC patients with loss of BRCA1 expression had a tendency to have poorer overall survival (OS) than those positive for BRCA1 (p = 0.09). TNBC patients with positive p53 expression showed better OS than those with p53 negativity (p = 0.001). In terms of combined expression patterns, significantly poorer overall survival (OS) was observed for BRCA1-negative/p53-negative TNBCs and best OS for BRCA1-positive/p53-positive TNBCs (p = 0.005). CONCLUSIONS Combined expression patterns of BRCA1 and p53 could serve as useful prognostic markers in TNBC.
Collapse
Affiliation(s)
- Min Chong Kim
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Eun Choi
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
16
|
Liu M, Wang D, Li N. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression. Biochem Biophys Res Commun 2016; 473:168-173. [DOI: 10.1016/j.bbrc.2016.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|