1
|
Sasaki M, Sato Y, Nakanuma Y. A heterogeneous subtype of biliary epithelial senescence may be involved in the pathogenesis of primary biliary cholangitis. Clin Res Hepatol Gastroenterol 2025; 49:102512. [PMID: 39662730 DOI: 10.1016/j.clinre.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND & AIMS Biliary epithelial senescence is involved in the pathogenesis of primary biliary cholangitis (PBC). We hypothesized that a unique subtype of programmed death-ligand 1 (PD-L1)-positive senescent biliary epithelial cells (BECs) may be related to the pathogenesis of PBC in association with cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) pathway. APPROACH & RESULTS The expression of PD-L1, STING and their association with senescent markers p16INK4a and p21WAF1/Cip1 were immunohistochemically determined in livers taken from the patients with PBC (n = 87) and 97 diseased and normal control livers. The expression of PD-L1 was significantly increased in a part of senescent BECs with p21WAF1/Cip1 expression in BECs in the damaged small bile ducts in PBC, compared to control livers (p < 0.01). In contrast, PD-L1 was not expressed in BECs in ductular reactions. The expression of STING was significantly increased in BECs in small bile ducts and ductular reactions in PBC, compared to control livers (p < 0.01). The expression of PD-L1, STING and senescence associated secretory phenotypes (SASPs) including interferon (IFN)-beta was significantly increased in senescent BECs induced by a treatment with serum depletion or glycochenodeoxycholic acid (GCDC) for 4-7 days (p < 0.01) and the increase was significantly suppressed by a knockdown of STING using siRNA (p < 0.01). Induction of cellular senescence induced by a treatment with serum depletion or GCDC was significantly suppressed by a knockdown of STING in BECs. (p < 0.01). CONCLUSION A unique subtype of senescent BECs with PD-L1 expression associated with cGAS-STING pathway may be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui 918-8503, Japan
| |
Collapse
|
2
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Panda K, Sood V, Lal BB, Khanna R, Rastogi A, Ramakrishna G, Alam S. Liver histology and hepatic progenitor cell activity in pediatric acute liver failure: Implications for clinical outcome. Pediatr Transplant 2024; 28:e14662. [PMID: 38036869 DOI: 10.1111/petr.14662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hepatic progenitor cell (HPC) activity and regenerative process that follows pediatric acute liver failure (PALF) is still not well understood. This clinicopathological study was thus conducted with an aim to study the correlation of liver histology and HPC activity with outcomes in PALF. METHODS All PALF patients with available hepatic histological specimens were included and specimens were analyzed for hepatocyte loss, HPC activity [using cytokeratin (CK) 7, CK19, sex-determining region Y-related high mobility group box(SOX)9 and epithelial cell adhesion molecule (EpCAM)], hepatocyte proliferation (using Ki67), and hepatocyte senescence (using p53 and p21). RESULTS Ninety-four children were included: 22 (23.4%) survived with native liver (SNL) (i.e., the good outcome group) while rest (i.e., the poor outcome group) either died [33%, 35.1%] or received liver transplant (LT) [39%, 41.5%]. When compared to subjects with poor outcomes, those in the SNL group exhibited significantly less severe hepatocyte loss, fewer HPC/hpf, more proliferating hepatocytes, and less senescent hepatocytes (p < .05). Increasing severity of hepatocyte loss (adjusted OR: 9.95, 95% CI: 4.22-23.45, p < .001) was identified as an independent predictor of poor outcome. Eighty percent children with >50% native hepatocyte loss had poor outcome within 10 days of hospitalization. CONCLUSION In PALF, more severe hepatocyte loss, higher number of HPC activation, lesser number of proliferating hepatocytes, and greater number of senescent hepatocytes are associated with a poor outcome. Loss of >50% hepatocytes is an independent predictor of poor outcome in PALF.
Collapse
Affiliation(s)
- Kalpana Panda
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
4
|
Panda K, Sood V, Lal BB, Khanna R, Rastogi A, Ramakrishna G, Alam S. Liver histology and hepatic progenitor cell activity in pediatric acute liver failure: Implications for clinical outcome. Pediatr Transplant 2024; 28. [DOI: https:/doi.org/10.1111/petr.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/11/2023] [Indexed: 04/16/2025]
Abstract
AbstractBackgroundHepatic progenitor cell (HPC) activity and regenerative process that follows pediatric acute liver failure (PALF) is still not well understood. This clinicopathological study was thus conducted with an aim to study the correlation of liver histology and HPC activity with outcomes in PALF.MethodsAll PALF patients with available hepatic histological specimens were included and specimens were analyzed for hepatocyte loss, HPC activity [using cytokeratin (CK) 7, CK19, sex‐determining region Y‐related high mobility group box(SOX)9 and epithelial cell adhesion molecule (EpCAM)], hepatocyte proliferation (using Ki67), and hepatocyte senescence (using p53 and p21).ResultsNinety‐four children were included: 22 (23.4%) survived with native liver (SNL) (i.e., the good outcome group) while rest (i.e., the poor outcome group) either died [33%, 35.1%] or received liver transplant (LT) [39%, 41.5%]. When compared to subjects with poor outcomes, those in the SNL group exhibited significantly less severe hepatocyte loss, fewer HPC/hpf, more proliferating hepatocytes, and less senescent hepatocytes (p < .05). Increasing severity of hepatocyte loss (adjusted OR: 9.95, 95% CI: 4.22–23.45, p < .001) was identified as an independent predictor of poor outcome. Eighty percent children with >50% native hepatocyte loss had poor outcome within 10 days of hospitalization.ConclusionIn PALF, more severe hepatocyte loss, higher number of HPC activation, lesser number of proliferating hepatocytes, and greater number of senescent hepatocytes are associated with a poor outcome. Loss of >50% hepatocytes is an independent predictor of poor outcome in PALF.
Collapse
Affiliation(s)
- Kalpana Panda
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Vikrant Sood
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Rajeev Khanna
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| | - Archana Rastogi
- Department of Pathology Institute of Liver and Biliary Sciences New Delhi India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine Institute of Liver and Biliary Sciences New Delhi India
| | - Seema Alam
- Department of Pediatric Hepatology Institute of Liver and Biliary Sciences New Delhi India
| |
Collapse
|
5
|
Jannone G, Riani EB, de Magnée C, Tambucci R, Evraerts J, Ravau J, Baldin P, Bouzin C, Loriot A, Gatto L, Decottignies A, Najimi M, Sokal EM. Senescence and senotherapies in biliary atresia and biliary cirrhosis. Aging (Albany NY) 2023; 15:204700. [PMID: 37204430 DOI: 10.18632/aging.204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-β-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.
Collapse
Affiliation(s)
- Giulia Jannone
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eliano Bonaccorsi Riani
- Abdominal Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Catherine de Magnée
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Roberto Tambucci
- Pediatric Surgery and Transplantation Unit, Department of Surgery, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Jonathan Evraerts
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Joachim Ravau
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pamela Baldin
- Department of Anatomopathology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Axelle Loriot
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Etienne Marc Sokal
- Pediatric Hepatology and Cell Therapy Unit, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| |
Collapse
|
6
|
An involvement of Hippo-yes-associated protein pathway in biliary epithelial senescence in primary biliary cholangitis. Clin Res Hepatol Gastroenterol 2023; 47:102106. [PMID: 36849079 DOI: 10.1016/j.clinre.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND & AIMS Accumulating evidence suggest that Hippo-yes-associated protein (YAP) pathway plays important roles in development and repair after injuries in biliary system. We disclosed that senescent biliary epithelial cells (BECs) participate in the pathogenesis of primary biliary cholangitis (PBC). We hypothesized that dysregulation of Hippo-YAP pathway may be associated with biliary epithelial senescence in pathogenesis of PBC. APPROACH & RESULTS Cellular senescence was induced in cultured BECs by treatment with serum depletion or glycochenodeoxycholic acid. The expression and activity of YAP1 were significantly decreased in senescent BECs (p<0.01). Cellular senescence and apoptosis were significantly increased (p<0.01) and a proliferation activity and a 3D-cyst formation activity were significantly decreased (p<0.01) by a knockdown of YAP1 in BECs. The expression of YAP1 were immunohistochemically determined in livers taken from the patients with PBC (n = 79) and 79 control diseased and normal livers and its association with senescent markers p16INK4a and p21WAF1/Cip1 was analyzed. The nuclear expression of YAP1, which indicates activation of YAP1, was significantly decreased in BECs in small bile ducts involved in cholangitis and ductular reactions in PBC, compared to control livers (p<0.01). The decreased expression of YAP1 was seen in senescent BECs showing expression of p16INK4a and p21WAF1/Cip1 in bile duct lesions. CONCLUSION Dysregulation of Hippo-YAP1 pathway may be involved in the pathogenesis of PBC in association with biliary epithelial senescence.
Collapse
|
7
|
Nakajima Y, Yamazaki Y, Gao X, Hashimoto M, Nio M, Wada M, Fujishima F, Sasano H. Association between mitochondrial and nuclear DNA damages and cellular senescence in the patients with biliary atresia undergoing Kasai portoenterostomy and liver transplantation. Med Mol Morphol 2022; 55:131-145. [PMID: 35238992 DOI: 10.1007/s00795-022-00314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
Biliary atresia (BA) is a cholestatic disease with extrahepatic bile duct obstruction that requires early surgical intervention and occasionally liver transplantation (LT). Accumulation of toxic bile acids induces oxidative stress that results in cell damage, such as cell senescence, mitochondrial dysfunction and others. However, details of their reciprocal association and clinical significance are unexplored. Therefore, we used immuno-localization of markers for cell senescence (p16 and p21), nuclear double-strand DNA damage (γH2AX), autophagy (p62), and mtDNA damage (mtDNA copy number) in patients with BA who underwent Kasai portoenterostomy (KP) and LT. We studied liver biopsy specimens from 54 patients with BA, 14 who underwent LT and 11 from the livers of neonates and infants obtained at autopsy. In hepatocytes, p21 expression was significantly increased in KP. In cholangiocytes, p16 expression was significantly increased in LT, and p21 expression was significantly increased in KP. p62 expression was significantly increased in the KP hepatocytes and LT cholangiocytes. Furthermore, mtDNA copy number significantly decreased in KP and LT compared with the control. Cell senescence and mitochondrial DNA damage progression were dependent on the BA clinical stages and could possibly serve as the markers of indication of LT.
Collapse
Affiliation(s)
- Yudai Nakajima
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Masatoshi Hashimoto
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Kousai Hospital, Sendai, Japan
| | - Motoshi Wada
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
8
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2021; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
10
|
Baiocchi L, Glaser S, Francis H, Kennedy L, Felli E, Alpini G, Gracia‐Sancho J. Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatol Commun 2021; 5:1125-1137. [PMID: 34278165 PMCID: PMC8279468 DOI: 10.1002/hep4.1725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The aging process is represented by the time-dependent decay in physiologic functions of living beings. Major interest has been focused in recent years on the determinants of this progressive condition due to its correlative relationship with the onset of diseases. Several hallmark features have been observed in aging, such as genetic alterations, mitochondrial impairment, and telomere shortening. At the cellular level, a senescent phenotype has been identified in response to aging that is characterized by a flat appearance, proliferative arrest, and production of specific molecules. The net effect of these cells in the course of diseases is an argument of debate. In fact, while the onset of a senescent phenotype may prevent tumor spreading, these cells appear to support pathological processes in some conditions. Several studies are now focused on clarifying the specific molecular pathways of aging/senescence in different cells, tissues, or organs. Biliary and vascular components, within the liver, have emerged as important determinants of some form of liver disease. In this review we summarize the most recent achievements on aging/senescence, focusing on the biliary and vascular liver system. Conclusion: Several findings, in both preclinical animal models and on human liver specimens, converge in supporting the presence of specific aging hallmarks in the diseases involving these hepatic compartments.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology UnitDepartment of MedicineUniversity of Tor VergataRomeItaly
| | - Shannon Glaser
- Medical PhysiologyTexas A&M College of MedicineBryanTXUSA
| | - Heather Francis
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Lindsey Kennedy
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Eric Felli
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| | - Gianfranco Alpini
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Jordi Gracia‐Sancho
- Liver Vascular BiologyIDIBAPS Biomedical Research Institute and CIBEREHDBarcelonaSpain
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| |
Collapse
|
11
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
12
|
Sasaki M, Sato Y, Nakanuma Y. Increased p16 INK4a-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun 2019; 107:102377. [PMID: 31812332 DOI: 10.1016/j.jaut.2019.102377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Senescent biliary epithelial cells (BECs) may be involved in the pathophysiology of primary biliary cholangitis (PBC) by secreting senescence-associated secretory phenotypes. We examined an association of the extent of cellular senescence in BECs with clinicopathological features including response to ursodeoxycholic acid (UDCA) and a possibility of senolytic therapy in PBC. METHODS The expression of senescent markers (p21WAF1/Cip1, p16INK4a) and B-cell lymphoma-extra large (Bcl-xL), a key regulator of senescent cell anti-apoptotic pathway, was immunohistochemically examined in livers from patients with PBC (n = 145) and 103 control livers. Senolytic effect of Bcl-xL inhibitors (A-1331852 and Navitoclax) was examined in senescent murine BECs. RESULTS Senescent BECs were increased in small bile ducts in PBC, compared with control livers (p < 0.01). Senescent BECs were increased in ductular reactions in PBC, stage 3-4, compared with PBC, stage 1-2 and control livers (p < 0.01). The extent of senescent BECs in bile ductules was significantly correlated with stage and hepatitis activity (p < 0.01) and the expression of p16INK4a in bile ductules was significantly correlated to inadequate response to UDCA in PBC (p < 0.01). Double immunofluorescence revealed an increased expression of Bcl-xL in p16INK4a-positive senescent BECs in PBC. Bcl-xL inhibitors selectively induced apoptosis in senescent murine BECs (p < 0.01). CONCLUSION The extent of senescent BECs in small bile ducts and bile ductules was closely related to stage and activity of PBC and the increased expression of p16 INK4a in bile ductules was correlated with inadequate response to UDCA.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Yasuni Nakanuma
- Department of Pathology, Fukui Saiseikai Hospital, Fukui, 918-8503, Japan
| |
Collapse
|