1
|
Pelosi G, Travis WD. Head-to-head: Should Ki67 proliferation index be included in the formal classification of pulmonary neuroendocrine neoplasms? Histopathology 2024; 85:535-548. [PMID: 38728050 DOI: 10.1111/his.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 08/31/2024]
Abstract
The reporting of lung neuroendocrine neoplasms (NENs) according to the 2021 World Health Organisation (WHO) is based on mitotic count per 2 mm2, necrosis assessment and a constellation of cytological and immunohistochemical details. Accordingly, typical carcinoid and atypical carcinoid are low- to intermediate-grade neuroendocrine tumours (NETs), while large-cell neuroendocrine carcinoma (NEC) and small-cell lung carcinoma are high-grade NECs. In small-sized diagnostic material (cytology and biopsy), the noncommittal term of carcinoid tumour/NET not otherwise specified (NOS) and metastatic carcinoid NOS have been introduced with regard to primary and metastatic diagnostic settings, respectively. Ki-67 antigen, a well-known marker of cell proliferation, has been included in the WHO classification as a non-essential but desirable criterion, especially to distinguish NETs from high-grade NECs and to delineate the provisional category of carcinoid tumours/NETs with elevated mitotic counts (> 10 mitoses per mm2) and/or Ki-67 proliferation index (≥ 30%). However, a wider use of this marker in the spectrum of lung NENs continues to be highly reported and debated, thus witnessing a never-subsided attention. Therefore, the arguments for and against incorporating Ki-67 in the classification and clinical practice of these neoplasms are discussed herein in detail.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
2
|
Finsterbusch K, van Diest PJ, Focke CM. Intertumoral heterogeneity of bifocal breast cancer: a morphological and molecular study. Breast Cancer Res Treat 2024; 205:413-421. [PMID: 38453779 DOI: 10.1007/s10549-024-07281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE To analyze concordance rates between individual foci of bifocal BC for histological grade, type and intrinsic subtype based on immunohistochemical (IHC) and mRNA-testing using MammaTyper. METHODS We evaluated histological grade and type as well as intrinsic subtype based on IHC status for estrogen and progesterone receptors, HER2 and the mitotic activity index in 158 individual foci of 79 bifocal BC. A subgroup of 31 cases additionally underwent mRNA-based subtyping using the MammaTyper (MT) test. We calculated concordance rates between individual foci, as well as Cohen's Kappa (K). RESULTS For 79 bifocal BC, concordance rates between individual foci for grade, histological type, and IHC-based subtype were 69.6% (K=0.53), 92.4% (K=0.81), and 74.7% (K=0.62), respectively. In the MT subgroup of 31 bifocal BC, concordance rates between individual foci for grade, histological type, IHC-based and mRNA-based intrinsic subtype were 87.1% (K=0.78), 90.3% (K=0.73), 87.1% (K=0.82), and 87.1% (K=0.7), respectively. Overall concordance between IHC- and mRNA-based subtype in the MT subgroup was 79% (K=0.7). In 6/79 cases (7.6%), testing of the smaller focus added clinically relevant information either on IHC- or mRNA-level: four cases showed high hormonal receptor expression while the expression in the larger focus was negative or low, warranting additional endocrine treatment; two cases presented with higher proliferative activity in the smaller focus, warranting additional chemotherapy. CONCLUSION In bifocal BC, intertumoral heterogeneity on the morphological, immunohistochemical and molecular level is common, with discordant intrinsic subtype in up to 25% between individual foci, with about 8% clinically relevant discordances.
Collapse
Affiliation(s)
- Kai Finsterbusch
- Department of Surgical Pathology, Dietrich Bonhoeffer Klinikum, Allendestrasse 30, 17033, Neubrandenburg, Germany
| | - Paul J van Diest
- Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Cornelia M Focke
- Department of Surgical Pathology, Dietrich Bonhoeffer Klinikum, Allendestrasse 30, 17033, Neubrandenburg, Germany.
| |
Collapse
|
3
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Low correlation between Ki67 assessed by qRT-PCR in Oncotype Dx score and Ki67 assessed by Immunohistochemistry. Sci Rep 2022; 12:3617. [PMID: 35256657 PMCID: PMC8901910 DOI: 10.1038/s41598-022-07593-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancers expressing high levels of Ki67 are associated with poor outcomes. Oncotype DX test was designed for ER+/HER2- early-stage breast cancers to help adjuvant chemotherapy decision by providing a Recurrent Score (RS). RS measures the expression of 21 specific genes from tumor tissue, including Ki67. The primary aim of this study was to assess the agreement between Ki67RNA obtained with Oncotype DX RS and Ki67IHC. Other objectives were to analyze the association between the event free survival (EFS) and the expression level of Ki67RNA; and association between RS and Ki67RNA. Herein, we report a low agreement of 0.288 by Pearson correlation coefficient test between Ki67IHC and Ki67RNA in a cohort of 98 patients with early ER+/HER2- breast cancers. Moreover, Ki67RNAhigh tumors were significantly associated with the occurrence of events (p = 0.03). On the other hand, we did not find any association between Ki67IHC and EFS (p = 0.26). We observed a low agreement between expression level of Ki67RNA and Ki67 protein labelling by IHC. Unlike Ki67IHC and independently of the RS, Ki67RNA could have a prognostic value. It would be interesting to better assess the prognosis and predictive value of Ki67RNA measured by qRT-PCR. The Ki67RNA in medical routine could be a good support in countries where Oncotype DX is not accessible.
Collapse
|
5
|
Puppe J, Seifert T, Eichler C, Pilch H, Mallmann P, Malter W. Genomic Signatures in Luminal Breast Cancer. Breast Care (Basel) 2020; 15:355-365. [PMID: 32982645 DOI: 10.1159/000509846] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/01/2020] [Indexed: 01/22/2023] Open
Abstract
Background Breast cancer is a very heterogeneous disease and luminal breast carcinomas represent the hormone receptor-positive tumors among all breast cancer subtypes. In this context, multigene signatures were developed to gain further prognostic and predictive information beyond clinical parameters and traditional immunohistochemical markers. Summary For early breast cancer patients these molecular tools can guide clinicians to decide on the extension of endocrine therapy to avoid over- and undertreatment by adjuvant chemotherapy. Beside the predictive and prognostic value, a few genomic tests are also able to provide intrinsic subtype classification. In this review, we compare the most frequently used and commercially available molecular tests (OncotypeDX®, MammaPrint®, Prosigna®, EndoPredict®, and Breast Cancer Index<sup>SM</sup>). Moreover, we discuss the clinical utility of molecular profiling for advanced breast cancer of the luminal subtype. Key Messages Multigene assays can help to de-escalate systemic therapy in early-stage breast cancer. Only the Oncotype DX® and MammaPrint®<sup></sup>test are validated by entirely prospective and randomized phase 3 trials. More clinical evidence is needed to support the use of genomic tests in node-positive disease. Recent developments in high-throughput sequencing technology will provide further insights to understand the heterogeneity of luminal breast cancers in early-stage and metastatic disease.
Collapse
Affiliation(s)
- Julian Puppe
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tabea Seifert
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Eichler
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henryk Pilch
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfram Malter
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Xie T, Wu D, Li S, Li X, Wang L, Lu Y, Song Q, Sun X, Wang X. microRNA-582 Potentiates Liver and Lung Metastasis of Gastric Carcinoma Cells Through the FOXO3-Mediated PI3K/Akt/Snail Pathway. Cancer Manag Res 2020; 12:5201-5212. [PMID: 32636681 PMCID: PMC7335301 DOI: 10.2147/cmar.s245674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background The dysregulation of microRNA (miRNAs) is broadly participated in cancer progression, resulting in sustained cell proliferation by directly targeting various targets. This study investigated the expression of miR-582 in GC and its association with liver metastasis. Methods Firstly, differentially expressed miRNAs in gastric cancer (GC) tissues were predicted by microarray. Then, the relationship between miR-582 and clinical characteristics of GC patients was analyzed. By silencing of miR-582 in GC cells, the change in malignant biological behaviors of GC cells was detected. The upstream lncRNA, downstream targeting genes of miR-582 and the corresponding signaling pathway were predicted by online databases and verified by luciferase reporter assays, RT-qPCR and Western blot analysis. Finally, the effects of miR-582 on the growth and metastasis of GC cells were detected by in vivo tumorigenesis and metastasis tests. Results MiR-582 was highly expressed in GC tissues and related to the metastasis of patients with GC. Silencing of miR-582 expression blocked malignant biological behaviors of GC cells in vitro and in vivo. MiR-582 inhibited forkhead box protein O3 (FOXO3) to upregulate the PI3K/AKT/Snail signaling pathway in GC cells. Besides, GATA6-AS1 was found as an upstream lncRNA to modulate the expression of miR-582. Conclusion MiR-582 induced by GATA6-AS1 silencing promotes the growth and metastasis of GC cells by targeting FOXO3 to induce the activation of the PI3K/AKT/Snail signaling pathway. MiR-582 could be a potential molecular therapy target for patients with GC.
Collapse
Affiliation(s)
- Tianyu Xie
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Di Wu
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shuo Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiongguang Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Lipeng Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yixun Lu
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Qiying Song
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xuehong Sun
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xinxin Wang
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|