1
|
Yan Q, Deng Y, Zhang Q. A comprehensive overview of metaplastic breast cancer: Features and treatments. Cancer Sci 2024; 115:2506-2514. [PMID: 38735837 PMCID: PMC11309924 DOI: 10.1111/cas.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Metaplastic breast cancer is a rare, aggressive, and chemotherapy-resistant subtype of breast cancers, accounting for less than 1% of invasive breast cancers, characterized by adenocarcinoma with spindle cells, squamous epithelium, and/or mesenchymal tissue differentiation. The majority of metaplastic breast cancers exhibit the characteristics of triple-negative breast cancer and have unfavorable prognoses with a lower survival rate. This subtype often displays gene alterations in the PI3K/AKT pathway, Wnt/β-catenin pathway, and cell cycle dysregulation and demonstrates epithelial-mesenchymal transition, immune response changes, TP53 mutation, EGFR amplification, and so on. Currently, the optimal treatment of metaplastic breast cancer remains uncertain. This article provides a comprehensive review on the clinical features, molecular characteristics, invasion and metastasis patterns, and prognosis of metaplastic breast cancer, as well as recent advancements in treatment strategies.
Collapse
Affiliation(s)
- Qiaoke Yan
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Yuwei Deng
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Qingyuan Zhang
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
- Department of Medical OncologyHeilongjiang Cancer Prevention and Treatment InstituteHarbin CityHeilongjiang ProvinceChina
| |
Collapse
|
2
|
Barrientos-Toro EN, Ding Q, Raso MG. Translational Aspects in Metaplastic Breast Carcinoma. Cancers (Basel) 2024; 16:1433. [PMID: 38611109 PMCID: PMC11011105 DOI: 10.3390/cancers16071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is the most common cancer among women. Metaplastic breast carcinoma (MpBC) is a rare, heterogeneous group of invasive breast carcinomas, which are classified as predominantly triple-negative breast carcinomas (TNBCs; HR-negative/HER2-negative). Histologically, MpBC is classified into six subtypes. Two of these are considered low-grade and the others are high-grade. MpBCs seem to be more aggressive, less responsive to neoadjuvant chemotherapy, and have higher rates of chemoresistance than other TNBCs. MpBCs have a lower survival rate than expected for TNBCs. MpBC treatment represents a challenge, leading to a thorough exploration of the tumor immune microenvironment, which has recently opened the possibility of new therapeutic strategies. The epithelial-mesenchymal transition in MpBC is characterized by the loss of intercellular adhesion, downregulation of epithelial markers, underexpression of genes with biological epithelial functions, upregulation of mesenchymal markers, overexpression of genes with biological mesenchymal functions, acquisition of fibroblast-like (spindle) morphology, cytoskeleton reorganization, increased motility, invasiveness, and metastatic capabilities. This article reviews and summarizes the current knowledge and translational aspects of MpBC.
Collapse
Affiliation(s)
- Elizve Nairoby Barrientos-Toro
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Qingqing Ding
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Al Saleem MA, Khan NM, ElSharkawy TM. Multifocal gastrointestinal stromal tumor with osseous metaplasia: a case report. J Med Case Rep 2023; 17:546. [PMID: 38098096 PMCID: PMC10722813 DOI: 10.1186/s13256-023-04262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumor is considered the most common mesenchymal neoplasm of the gastrointestinal tract. The majority of gastrointestinal stromal tumor cases are located in the stomach and usually affects older adults. Most of gastrointestinal stromal tumor cases are sporadic; however, few have a syndromic association, including Carney triad, Carney-Stratakis syndrome, familial gastrointestinal stromal tumor syndrome, and neurofibromatosis type 1. CASE PRESENTATION Herein, we report a rare case of a 54-year-old Middle-Eastern female with multifocal gastrointestinal stromal tumor mixed type (epithelioid and spindle cell type) with osseous metaplasia. Fluoresce in situ hybridization analysis of platelet-derived growth factor receptor alpha revealed deletion in 42% of the tumor cells studied. Interestingly, next generation sequencing revealed platelet-derived growth factor receptor alpha exon 12 mutation (p.Y555C) and exon 14 mutation (p.N659Y). CONCLUSIONS In conclusion, osseous metaplasia in GIST is a very rare event and only few cases are reported in the literature. The number of reported cases is inadequate to confirm the pathogenesis and the prognosis.
Collapse
Affiliation(s)
- Maryam Abdullah Al Saleem
- Department of Pathology, King Fahd Hospital of University, College of Medicine, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia.
| | - Nida Mirzaman Khan
- Department of Pathology, King Fahd Hospital of University, College of Medicine, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Tarek Mohammad ElSharkawy
- Department of Pathology, King Fahd Hospital of University, College of Medicine, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| |
Collapse
|
4
|
Song Y, Bai G, Li X, Zhou L, Si Y, Liu X, Deng Y, Shi Y. Bioinformatics analysis of human kallikrein 5 ( KLK5) expression in metaplastic triple-negative breast cancer. CANCER INNOVATION 2023; 2:376-390. [PMID: 38090381 PMCID: PMC10686124 DOI: 10.1002/cai2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2024]
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype; most cases are triple-negative breast cancers (TNBCs) and are poorly responsive to conventional systemic therapy. Few potential diagnostic and prognostic markers for distinguishing between metaplastic TNBC and nonmetaplastic TNBC have been discovered. We performed bioinformatic analysis to explore the underlying mechanism by which metaplastic TNBC differs from nonmetaplastic TNBC and provides potential pathogenic genes of metaplastic TNBC. Methods Differentially expressed genes (DEGs) in metaplastic tumors and nonmetaplastic tumors from TNBC patients were screened using GSE165407. The GSE76275 data set and The Cancer Genome Atlas (TCGA) database were used to screen DEGs in TNBC and non-TNBC. Metascape and DAVID were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis of DEGs. Online databases, including UALCAN, GEPIA, HPA, Breast Cancer Gene-Expression Miner, and quantitative PCR and western blot, were used to examine KLK5 messenger RNA and protein expression in breast cancer. Analysis of KLK5‑associated genes was performed with TCGA data, and the LinkedOmics database was used to detect the genes co-expressed with KLK5. STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape were used to screen for hub genes. Kaplan‑Meier plotter was used for survival analysis. Results KLK5 was identified among the DEGs in nonmetaplastic TNBC and metaplastic TNBC. The KLK5 gene was overexpressed in nonmetaplastic TNBC but downregulated in metaplastic TNBC. KEGG and GO analyses revealed that epithelial-to-mesenchymal transition was a pathogenic mechanism in metaplastic TNBC and an important pathway by which KLK5 and its associated genes DSG1 and DSG3 influence metaplastic TNBC progression. Prognosis analysis showed that only low expression of KLK5 in metaplastic TNBC had clinical significance. Conclusion Our research indicated that KLK5 may be a pivotal molecule with a key role in the mechanism of tumorigenesis in metaplastic TNBC.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Guiying Bai
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaoqing Li
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Liyan Zhou
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yiran Si
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaohui Liu
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yilin Deng
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yehui Shi
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
- Medical Oncology Department of Breast CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- National Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Chao X, Tan W, Tsang JY, Tse GM, Hu J, Li P, Hou J, Li M, He J, Sun P. Clinicopathologic and genetic features of metaplastic breast cancer with osseous differentiation: a series of 6 cases. Breast Cancer 2021; 28:1100-1111. [PMID: 33942253 DOI: 10.1007/s12282-021-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 01/12/2023]
Abstract
AIMS Metaplastic breast cancer (MBC) comprises a heterogeneous group of tumors, of which MBC with osseous differentiation (MBC-OD) is extremely rare that only few cases have been reported. This study aimed to present the clinicopathologic and molecular features of MBC-OD. METHODS We collected 6 cases of MBC-OD from five different centers and described its clinicopathologic and molecular characteristics based on the next-generation sequencing. Another 11 cases from the literature were also reviewed to better characterize the tumor. RESULTS The tumor primarily showed an osteosarcoma-like appearance, which composed of high cellularity with spindle cells and osteoblast-like cells producing coarse lace-like neoplastic bone (4/6) or osteoid matrix (6/6). 55 somatic mutations including 39 missenses (70.9%), 9 frameshifts (16.4%), 3 splice sites (5.5%), 3 in-frame InDels (5.5%) and 1 nonsense (1.8%) were identified. TP53 was the most frequently mutated genes (5/6, 83.3%), followed by RB1 (3/6, 50.0%), BCOR (2/6, 33.3%), MED12 (2/6, 33.3%), PIK3CA (2/6, 33.3%), and TET2 (2/6, 33.3%). Genetic alterations suggesting therapies with clinical benefit, including mTOR inhibitors, tyrosine kinase inhibitors (TKI), and poly-ADP ribose polymerase inhibitor (PARPi), were observed in five cases. The median follow-up was 21 months (range, 3-80 months). Local recurrence was observed in two cases and three patients displayed distant metastasis. Two patients died of the disease at 3 months and 7 months, respectively. CONCLUSIONS Based on this series, MBC-OD is a highly aggressive breast tumor with osteosarcoma-like morphology and a high incidence of recurrent disease showing specific genetic profiles.
Collapse
Affiliation(s)
- Xue Chao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Wanlin Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jintao Hu
- Department of Pathology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Ping Li
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Jinghui Hou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Jiehua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China.
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
da Silva EM, Selenica P, Vahdatinia M, Pareja F, Da Cruz Paula A, Ferrando L, Gazzo AM, Dopeso H, Ross DS, Bakhteri A, Riaz N, Chandarlapaty S, Razavi P, Norton L, Wen HY, Brogi E, Weigelt B, Zhang H, Reis-Filho JS. TERT promoter hotspot mutations and gene amplification in metaplastic breast cancer. NPJ Breast Cancer 2021; 7:43. [PMID: 33863915 PMCID: PMC8052452 DOI: 10.1038/s41523-021-00250-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Metaplastic breast cancers (MBCs) are characterized by complex genomes, which seem to vary according to their histologic subtype. TERT promoter hotspot mutations and gene amplification are rare in common forms of breast cancer, but present in a subset of phyllodes tumors. Here, we sought to determine the frequency of genetic alterations affecting TERT in a cohort of 60 MBCs with distinct predominant metaplastic components (squamous, 23%; spindle, 27%; osseous, 8%; chondroid, 42%), and to compare the repertoire of genetic alterations of MBCs according to the presence of TERT promoter hotspot mutations or gene amplification. Forty-four MBCs were subjected to: whole-exome sequencing (WES; n = 27) or targeted sequencing of 341-468 cancer-related genes (n = 17); 16 MBCs were subjected to Sanger sequencing of the TERT promoter, TP53 and selected exons of PIK3CA, HRAS, and BRAF. TERT promoter hotspot mutations (n = 9) and TERT gene amplification (n = 1) were found in 10 of the 60 MBCs analyzed, respectively. These TERT alterations were less frequently found in MBCs with predominant chondroid differentiation than in other MBC subtypes (p = 0.01, Fisher's exact test) and were mutually exclusive with TP53 mutations (p < 0.001, CoMEt). In addition, a comparative analysis of the MBCs subjected to WES or targeted cancer gene sequencing (n = 44) revealed that MBCs harboring TERT promoter hotspot mutations or gene amplification (n = 6) more frequently harbored PIK3CA than TERT wild-type MBCs (n = 38; p = 0.001; Fisher's exact test). In conclusion, TERT somatic genetic alterations are found in a subset of TP53 wild-type MBCs with squamous/spindle differentiation, highlighting the genetic diversity of these cancers.
Collapse
Affiliation(s)
- Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahsa Vahdatinia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Andrea M Gazzo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariya Bakhteri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
McCart Reed AE, Kalaw EM, Lakhani SR. An Update on the Molecular Pathology of Metaplastic Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:161-170. [PMID: 33664587 PMCID: PMC7924111 DOI: 10.2147/bctt.s296784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Metaplastic breast cancer (MpBC) is a fascinating morphologic sub-type of breast cancer, characterised by intra-tumoural heterogeneity. By definition, these tumors show regions of metaplasia that can present as spindle, squamous, chondroid or even osseous differentiation. MpBC are typically triple-negative, and are therefore not targetable with hormone therapy or anti-HER2 therapies, leaving only chemotherapeutics for management. MpBC are known for their aggressive course and poor response to chemotherapy. We review herein the pathology and molecular landscape of MpBC and discuss opportunities for targetted therapies as well as immunotherapies.
Collapse
Affiliation(s)
- Amy E McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Emarene M Kalaw
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Pathology Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
González-Martínez S, Pérez-Mies B, Carretero-Barrio I, Palacios-Berraquero ML, Perez-García J, Cortés J, Palacios J. Molecular Features of Metaplastic Breast Carcinoma: An Infrequent Subtype of Triple Negative Breast Carcinoma. Cancers (Basel) 2020; 12:cancers12071832. [PMID: 32650408 PMCID: PMC7408634 DOI: 10.3390/cancers12071832] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent invasive carcinomas that display differentiation of the neoplastic epithelium towards squamous cells and/or mesenchymal-type elements. Most MBC have a triple negative phenotype and poor prognosis. Thus, MBC have worse survival rates than other invasive breast carcinomas, including other triple negative breast carcinomas (TNBC). In this study, we reviewed the molecular features of MBC, pointing out the differences among subtypes. The most frequently mutated genes in MBC were TP53 and PIK3CA. Additionally, mutations in the other genes of the PI3K/AKT pathway indicated its importance in the pathogenesis of MBC. Regarding copy number variations (CNVs), MYC was the most frequently amplified gene, and the most frequent gene loss affected the CDKN2A/CDKN2B locus. Furthermore, the pattern of mutations and CNVs of MBC differed from those reported in other TNBC. However, the molecular profile of MBC was not homogeneous among histological subtypes, being the alterations in the PI3K pathway most frequent in spindle cell carcinomas. Transcriptomic studies have demonstrated an epithelial to mesenchymal program activation and the enrichment of stemness genes in most MBC. In addition, current studies are attempting to define the immune microenvironment of these tumors. In conclusion, due to specific molecular features, MBC have a different clinical behavior from other types of TNBC, being more resistant to standard chemotherapy. For this reason, new therapeutic approaches based on tumor molecular characteristics are needed to treat MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
- Instituto Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Breast Pathology Unit, Hospital Universitario Ramón y Cajal, 28801 Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
| | | | - José Perez-García
- IOB Institute of Oncology, Quironsalud Group, Hospital Quiron, 08023 Barcelona, Spain;
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- IOB Institute of Oncology, Quironsalud Group, Hospital Quiron, 08023 Barcelona, Spain;
- IOB Institute of Oncology, Quironsalud Group, 28006 Madrid, Spain
- Medica Scientia Innovation Research, 08018 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
- Instituto Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Breast Pathology Unit, Hospital Universitario Ramón y Cajal, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|