1
|
Capozzi A, Jansen FA, Smetsers SE, Bakhuizen JJ, Hiemcke-Jiwa LS, Kranendonk MEG, Flucke U, Alaggio R, de Krijger RR. The Histological Spectrum of DICER1-Associated Neoplasms. Pediatr Dev Pathol 2025:10935266251329752. [PMID: 40231379 DOI: 10.1177/10935266251329752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
DICER1 syndrome is a heterogeneous cancer predisposition syndrome, characterized by a large variety of benign and malignant tumor types, and caused by germline heterozygous pathogenic variants in the DICER1 gene, which is essential in miRNA processing and RNA interference. The clinical manifestations are diverse, with pleuropulmonary blastoma, Sertoli-Leydig cell tumor, cystic nephroma, uterine cervical embryonal rhabdomyosarcoma, and thyroid follicular nodular disease being the most prevalent tumor types. Since these neoplasms are rare and particularly occur in the pediatric population, pathologists should be aware of the potential relationship of these tumors with an underlying DICER1 syndrome in order to perform or suggest additional molecular pathologic analysis and refer patients and their parents for genetic counseling and testing. This review describes the various DICER1-related tumor types with emphasis on the histological features, reflects on the molecular pathogenesis of DICER1, and aims to raise awareness of this syndrome to facilitate earlier diagnosis.
Collapse
Affiliation(s)
- Alessia Capozzi
- Research Unit of Anatomical Pathology, Department of Medicine, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Floor A Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Jette J Bakhuizen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Uta Flucke
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rita Alaggio
- Department of Pathology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Marcelis L, Folpe A, Gupta S, Mendoza CJZ. A 23-year-old woman with a headache and imbalance. Brain Pathol 2025:e70008. [PMID: 40159593 DOI: 10.1111/bpa.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Affiliation(s)
- Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Andrew Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
3
|
Papke DJ. Mesenchymal Neoplasms of the Kidney and Perinephric Soft Tissue. Surg Pathol Clin 2025; 18:209-227. [PMID: 39890305 DOI: 10.1016/j.path.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Mesenchymal neoplasms of the kidney present challenges because they are uncommon, and because perinephric soft tissue biopsies are sometimes submitted as "kidney" masses, causing diagnostic confusion. Here, the author thoroughly reviews mesenchymal neoplasms of the kidney, including metanephric stromal tumor, classic and cellular congenital mesoblastic nephroma, anaplastic sarcoma and clear cell sarcoma of the kidney, malignant rhabdoid tumor, PEComa/angiomyolipoma, and anastomosing hemangioma. The author also discusses perinephric myxoid pseudotumor of fat, as well as diagnostic pitfalls presented by well-differentiated/dedifferentiated liposarcoma and sarcomatoid carcinoma.
Collapse
Affiliation(s)
- David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Chang HY, Saoud C, Torrence D, Tap W, Chi P, Antonescu CR. Alternative driver pathways in peripheral nerve sheath tumors - including DICER1 and/or KRAS alterations. J Pathol 2025; 265:372-384. [PMID: 39846292 DOI: 10.1002/path.6391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
DICER1-associated sarcoma is an emerging entity, defined by either somatic or germline dicer 1, ribonuclease III (DICER1) mutations and sharing characteristic morphologic features irrespective of the site of origin. In addition to the DICER1 driver mutation, concurrent genomic alterations, including tumor protein 53 (TP53) inactivation and RAS pathway activation, are frequently detected. Tumors that morphologically resemble malignant peripheral nerve sheath tumor (MPNST) have rarely been reported among DICER1 sarcomas and often pose diagnostic challenges. This study was prompted by a case involving morphologic features of MPNST, which harbored co-existing DICER1 and hotspot KRAS mutations. Hence, we investigated the incidence of these alterations in PNST from our molecular database compared to the genomic and morphologic spectrum of DICER1-mutant sarcomas. In total, we identified three cases diagnosed as MPNST with co-existing DICER1, ATRX chromatin remodeler (ATRX), and KRAS G12V/A alterations occurring in brain, cerebellopontine angle, and intra-abdominal sites. Two additional cases each of MPNSTs and neurofibromas were identified with hotspot KRAS mutations. All five MPNSTs lacked canonical neurofibromin 1 (NF1)/neurofibromin 2 (NF2) alterations, displaying a classic morphologic appearance with fascicular monomorphic spindle cells and followed a diverse clinical behavior. Among the 38 DICER1-associated sarcomas in our database, eight (21%) had secondary KRAS hotspot mutations, all composed of monomorphic spindle and/or round cells, including three with an MPNST-like histology. In contrast, all 10 (26%) DICER1-mutant sarcomas with TP53 mutations showed a pleomorphic phenotype. The DNA-based methylation profile of our index case clustered within the group of sarcomas with DICER1 alterations. Our results highlight a small subset of MPNST associated with DICER1 and/or KRAS mutations. However, their relationship with conventional MPNST remains to be determined in larger studies. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carla Saoud
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dianne Torrence
- Department of Pathology, Northwell Health, New York, NY, USA
| | - William Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Cazzato G, Casatta N, Lupo C, Ingravallo G, Ribatti D. DICER1 Tumor Syndrome: A Retrospective Review and Future Perspectives. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:264-275. [DOI: 10.3390/jmp5030019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024] Open
Abstract
DICER1 syndrome, a rare autosomal dominant genetic disorder, stems from mutations in the DICER1 gene, disrupting RNA interference and leading to various tumors. These tumors, affecting organs like the lung, kidney, ovaries, and brain, pose diagnostic challenges due to diverse presentations. Understanding DICER1-associated tumors, including pleuropulmonary blastoma, ovarian Sertoli–Leydig cell tumors, and others, is vital for early detection and management. Surgical resection, chemotherapy, and targeted therapies are primary treatment modalities, with genetic counseling playing a crucial role. Multidisciplinary care is essential for optimal management, offering hope for improved outcomes in affected individuals.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy
- Engineering and Applied Science Department, University of Bergamo, 24044 Dalmine, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
6
|
Eldaya RW, Fagan RJ, Dagher SA, Roy A, Dahyia S, Fuller GN, Wintermark M, Parsons MS, Huisman TAGM. Imaging Features of Primary Intracranial Sarcoma with DICER1 Mutation: A Multicenter Case Series. AJNR Am J Neuroradiol 2024; 45:626-631. [PMID: 38637027 PMCID: PMC11288540 DOI: 10.3174/ajnr.a8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 04/20/2024]
Abstract
Primary intracranial sarcoma, DICER1-mutant, is a rare, recently described entity in the fifth edition of the WHO Classification of CNS Tumors. Given the entity's rarity and recent description, imaging data on primary intracranial sarcoma, DICER1-mutant, remains scarce. In this multicenter case series, we present detailed multimodality imaging features of primary intracranial sarcoma, DICER1-mutant, with emphasis on the appearance of the entity on MR imaging. In total, 8 patients were included. In all 8 patients, the lesion demonstrated blood products on T1WI. In 7 patients, susceptibility-weighted imaging was obtained and demonstrated blood products. Primary intracranial sarcoma, DICER1-mutant, is a CNS neoplasm that primarily affects pediatric and young adult patients. In the present case series, we explore potential imaging findings that are helpful in suggesting this diagnosis. In younger patients, the presence of a cortical lesion with intralesional blood products on SWI and T1-weighted MR imaging, with or without extra-axial blood products, should prompt the inclusion of this entity in the differential diagnosis.
Collapse
Affiliation(s)
- Rami W Eldaya
- From the Department of Neuroradiology (R.W.E., S.A.D., G.N.F., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard J Fagan
- Department of Radiology (R.J.F., T.A.G.M.H.), Baylor College of Medicine, One Baylor Plaza - BCM360, Houston, Texas
| | - Samir A Dagher
- From the Department of Neuroradiology (R.W.E., S.A.D., G.N.F., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angshumoy Roy
- Department of Pathology (A.R.), Texas Children's Hospital, Houston, Texas
- Department of Pathology & Immunology (A.R.), Baylor College of Medicine, Houston, Texas
| | - Sonika Dahyia
- Department of Pathology and Immunology (S.D.), WA University School of Medicine, St Louis, MO, USA
| | - Gregory N Fuller
- From the Department of Neuroradiology (R.W.E., S.A.D., G.N.F., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
- Departments of Anatomical Pathology (G.N.F.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Max Wintermark
- From the Department of Neuroradiology (R.W.E., S.A.D., G.N.F., M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew S Parsons
- Mallinckrodt Institute of Radiology (M.S.P.), Washington University School of Medicine, St Louis, Missouri
| | - Thierry A G M Huisman
- Department of Radiology (R.J.F., T.A.G.M.H.), Baylor College of Medicine, One Baylor Plaza - BCM360, Houston, Texas
- Edward B. Singleton Department of Radiology (T.A.G.M.H.), Texas Children's Hospital, Houston, Texas
| |
Collapse
|
7
|
Kosteniuk SE, Michaiel G, Dunham C. A Case of Primary Intracranial Sarcoma, DICER1-Mutant, in a Child with a Germline DICER1 Mutation. Brain Sci 2023; 13:1040. [PMID: 37508972 PMCID: PMC10377263 DOI: 10.3390/brainsci13071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
DICER1 syndrome is a tumor predisposition syndrome caused by abnormal micro-RNA processing which leads to a variety of benign and malignant neoplasms in many organ systems, including the central nervous system. This paper reports the case of a primary intracranial sarcoma, DICER1-mutant, in a patient with a germline DICER1 variant thought most likely to be de novo. The patient is a ten-year-old boy who presented acutely with altered level of consciousness, emesis, and left-sided weakness. Imaging revealed a large right frontal hemorrhagic lesion, which was urgently debulked. Histology demonstrated a high-grade sarcomatous lesion. Molecular studies revealed compound heterozygous DICER1 variants (a frame shift insertion and a missense mutation), and a KRAS missense mutation. The final pathologic diagnosis was rendered to be "primary intracranial sarcoma, DICER1-mutant". Germline genetic testing revealed that the patient possessed a germline DICER1 variant (parental testing was negative). A dramatic reduction in tumor size was precipitated via chemotherapy (ifosfamide, carboplatin, and etoposide) and radiotherapy (focal proton beam therapy). There was no evidence of residual disease at the primary site at the end of the therapy.
Collapse
Affiliation(s)
| | - George Michaiel
- Division of Hematology/Oncology/BMT, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, BC V6H 3N1, Canada
| | - Christopher Dunham
- Division of Anatomic Pathology, British Columbia Children's Hospital, Vancouver, BC V6H 3N1, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
8
|
d'Amati A, Gianno F, Scuccimarri L, Lastilla M, Messina R, Signorelli F, Zimatore DS, Barresi S, Miele E, Alaggio R, Rossi S, Maiorano E, Ingravallo G, Giangaspero F, Antonelli M. Intracranial mesenchymal tumor with (novel) COX14::PTEN rearrangement. Acta Neuropathol Commun 2023; 11:95. [PMID: 37312212 DOI: 10.1186/s40478-023-01596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal tumors of the central nervous system (CNS) include numerous entities, with different pathological features and biological behavior. Mesenchymal non-meningothelial tumors are rare and comprise neoplasms that are exclusive to the CNS or show peculiar features when occurring in the CNS compared with other sites. Within this group there are three new entities, classified on the basis of specific molecular alterations and included in the 5th edition of the WHO Classification of CNS Tumors: primary intracranial sarcoma; DICER1-mutant; CIC-rearranged sarcoma; intracranial mesenchymal tumor, FET::CREB fusion-positive. These tumors often show variable morphology, making diagnosis very challenging, although the implementation of molecular techniques has led to better characterization and more precise identification of these entities. However, many molecular alterations have yet to be discovered and some recently reported CNS tumors are currently missing an appropriate classification. Herein, we report the case of a 43-year-old man who presented with an intracranial mesenchymal tumor. Histopathological examination showed a wide spectrum of peculiar morphological features and a non-specific immunohistochemical profile. Whole transcriptome sequencing revealed the presence of a novel genetic rearrangement involving COX14 and PTEN genes, which has never been reported before in any other neoplasm. The tumor did not cluster in any defined methylation class of the brain tumor classifier, but resulted in a calibrated score of 0.89 for the methylation class "Sarcoma, MPNST-like", when analyzed by the sarcoma classifier. Our study is the first to report about this tumor with unique pathological and molecular features, characterized by a novel rearrangement between COX14 and PTEN genes. Other studies are necessary in order to define it as a new entity or as a novel rearrangement involving recently described and incompletely characterized CNS mesenchymal tumors.
Collapse
Affiliation(s)
- Antonio d'Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy.
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| | - Luciana Scuccimarri
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Michele Lastilla
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Raffaella Messina
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Domenico Sergio Zimatore
- Interventional and Diagnostic Neuroradiology Unit, University Hospital Policlinico of Bari, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Eugenio Maiorano
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Giuseppe Ingravallo
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Felice Giangaspero
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| |
Collapse
|
9
|
Lebrun L, Allard-Demoustiez S, Gilis N, Van Campenhout C, Rodesch M, Roman C, Calò P, Lolli V, David P, Fricx C, De Witte O, Escande F, Maurage CA, Salmon I. Clinicopathological and molecular characterization of a case classified by DNA‑methylation profiling as "CNS embryonal tumor with BRD4-LEUTX fusion". Acta Neuropathol Commun 2023; 11:46. [PMID: 36934287 PMCID: PMC10024856 DOI: 10.1186/s40478-023-01549-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Central Nervous System (CNS) embryonal tumors represent a heterogeneous group of highly aggressive tumors occurring preferentially in children but also described in adolescents and adults. In 2021, the CNS World Health Organization (WHO) classification drastically changed the diagnosis of the other CNS embryonal tumors including new histo-molecular tumor types. Here, we report a pediatric case of a novel tumor type among the other CNS embryonal tumors classified within the methylation class "CNS Embryonal Tumor with BRD4-LEUTX Fusion". The patient was a 4-year girl with no previous history of disease. For a few weeks, she suffered from headaches, vomiting and mild fever associated with increasing asthenia and loss of weight leading to a global deterioration of health. MRI brain examination revealed a large, grossly well-circumscribed tumoral mass lesion located in the left parietal lobe, contralateral hydrocephalus and midline shift. Microscopic examination showed a highly cellular tumor with a polymorphic aspect. The majority of the tumor harbored neuroectodermal features composed of small cells with scant cytoplasm and hyperchromatic nuclei associated with small "medulloblastoma-like" cells characterized by syncytial arrangement and focally a streaming pattern. Tumor cells were diffusely positive for Synaptophysin, CD56, INI1 and SMARCA4 associated with negativity for GFAP, OLIG-2, EMA, BCOR, LIN28A and MIC-2. Additional IHC features included p53 protein expression in more than 10% of the tumor's cells and very interestingly, loss of H3K27me3 expression. The Heidelberg DNA-methylation classifier classified this case as "CNS Embryonal Tumor with BRD4:LEUTX Fusion". RNA-sequencing analyses confirmed the BRD4 (exon 13)-LEUTX (exon 2) fusion with no other molecular alterations found by DNA sequencing. Our case report confirmed that a new subgroup of CNS embryonal tumor with high aggressive potential, loss of H3K27me3 protein expression, BRDA4-LEUTX fusion, named "Embryonal CNS tumor with BRD4-LEUTX fusion", has to be considered into the new CNS WHO classification.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium.
| | - Sacha Allard-Demoustiez
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Nathalie Gilis
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Marine Rodesch
- Department of Pediatric, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Celine Roman
- Department of Pediatric, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Pierluigi Calò
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Universitaire Des Enfants Reine Fabiola, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Philippe David
- Department of Radiology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Christophe Fricx
- Department of Pediatric, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Fabienne Escande
- Service de Biochimie et Biologie Moléculaire, Pole Pathologie Biologie, CHU Lille, Lille, France
| | - Claude-Alain Maurage
- UFR3S - Laboratoire d'Histologie, Univ. Lille, 59000, Lille, France
- Inserm, U1172 - Lille Neuroscience & Cognition, 59000, Lille, France
- Institut de Pathologie, CHU Lille, 59000, Lille, France
| | - Isabelle Salmon
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| |
Collapse
|
10
|
Pizzimenti C, Gianno F, Gessi M. Expanding the spectrum of "mesenchymal" tumors of the central nervous system. Pathologica 2022; 114:455-464. [PMID: 36534424 PMCID: PMC9763981 DOI: 10.32074/1591-951x-826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
In this review, we summarize the clinical, histopathological, and molecular features of central nervous system (CNS) tumors with BCOR internal tandem duplication, intracranial mesenchymal tumor with FET/CREB fusion, CNS CIC-rearranged sarcomas and primary intracranial sarcoma DICER1-mutant, now included in the 2021 WHO classification of CNS tumors. Possible relationships between tumors occurring in the CNS and their systemic counterparts are discussed.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Pathological sciences, University of Rome “la Sapienza”Rome Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy,Correspondence Marco Gessi Neuropathology Unit, Div. of Pathology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore Largo A. Gemelli 8, 00168 Roma, Italy Tel.: +39-06-30154433 E-mail: ;
| |
Collapse
|
11
|
Kurdi N, Mokanszki A, Mehes G, Bedekovics J. Histone H3 K27 alterations in central nervous system tumours: Challenges and alternative diagnostic approaches. Mol Cell Probes 2022; 66:101876. [PMID: 36414128 DOI: 10.1016/j.mcp.2022.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Upon the discovery of frequent oncogenic histone alterations in paediatric diffuse high-grade gliomas, the epigenetic and transcriptional landscapes of tumours have become increasingly important aspects of diagnostic and prognostic analysis. The replacement of lysine 27 with methionine in H3 histone variants - H3 p.K28M (K27M) - was the first reported histone mutation associated with human malignancies, seen in up to 80% of paediatric diffuse midline gliomas. This discovery contributed to the updated 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumours in which paediatric diffuse high-grade gliomas were classified into molecular-based categories. Therefore, molecular analysis of tumour cells has become increasingly necessary for determining disease prognosis and potential therapeutic strategies. Although detection of histone alterations is crucial for the diagnosis of specific glioma subtypes, several studies have identified them in other CNS tumours, which may be misleading during routine diagnostic work. While traditional biopsies remain the standard for diagnosis of gliomas, they pose a high risk for surgical complications and patient morbidity. Consequently, this review highlights the importance of the H3 K27-alterations in paediatric gliomas and several other CNS tumours. We also discuss the potential of liquid biopsies as a minimally invasive and highly effective alternative for confirming the diagnosis and potential targeted epigenetic therapies which may improve the survival of patients.
Collapse
Affiliation(s)
- Nour Kurdi
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Nagyerdei krt 98, Hungary
| | - Attila Mokanszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Nagyerdei krt 98, Hungary
| | - Gabor Mehes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Nagyerdei krt 98, Hungary
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Nagyerdei krt 98, Hungary.
| |
Collapse
|
12
|
Yao K, Duan Z, Feng J, Yan C, Qi X. DICER1-associated central nervous system sarcoma with neural lineage differentiation: a case report. Diagn Pathol 2022; 17:72. [PMID: 36153506 PMCID: PMC9508712 DOI: 10.1186/s13000-022-01252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background DICER1-associated central nervous system sarcoma (DCS) without evidence of other cancer-related syndromes is rare. Though the morphology of DCS was highly variable, the immunophenotype was predominant myogenic phenotype. Other lineage markers were consistently negative. Case presentation We report a case of DCS with neurogenic differentiation proved by immunohistochemical staining and whole-exome sequencing (WES). An 8-year-old female patient presented with 8-day history of headache, nausea and vomiting. Magnetic resonance imaging (MRI) revealed a heterogeneous mass in the left parietal lobe. The patient underwent the craniotomy via left parietal approach to resect the tumor completely. Histologically, the tumor predominately showed fibrosarcoma-like spindle cells with obvious cytoplasmic eosinophilic globules. Immunohistochemically, the tumor stained positively for DICER1, Desmin, and several neurogenic markers. DICER1 somatic hotspot mutation was confirmed by WES, as well as TP53 and RAF1 mutations which were commonly found in DCS, and other sarcoma-associated genes including AR, AXL and ETV5 mutations. Subsequently, the result of Gene Ontology (GO) analysis showed that the mutated genes in this case were involved in neuron development. All of these findings indicated the diagnosis of DCS with neurogenic differentiation. Postoperatively, the patient received high-dose radiotherapy (60 Gy) and chemotherapy. There was no MRI evidence of tumor recurrence at the 21-month postoperative follow-up. Conclusions This unusual DCS case with neuronal differentiation is an important addition to the immuno-phenotypic spectrum of DCS. Although the prognosis for DCS is poor, gross tumor resection with high dose radiotherapy and chemotherapy may assist in prolonging survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-022-01252-1.
Collapse
|
13
|
Vuong HG, Le MK, Dunn IF. A systematic review of the clinicopathological features and prognostic outcomes of DICER1-mutant malignant brain neoplasms. J Neurosurg Pediatr 2022; 30:308-315. [PMID: 35901678 PMCID: PMC10193506 DOI: 10.3171/2022.6.peds22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE DICER1-mutant malignant brain neoplasms are very rare tumors, and published data have relied on case reports or small case series. In this review, the authors aimed to systematically summarize the types and distribution patterns of DICER1 mutations, clinicopathological characteristics, and prognostic outcomes of these tumors. METHODS The authors searched PubMed and Web of Science for relevant studies. They included studies if they provided individual patient data of primary malignant brain tumors carrying DICER1 mutations. RESULTS The authors found 16 studies consisting of 9 embryonal tumors with multilayered rosettes (ETMRs), 30 pineoblastomas, 52 primary intracranial sarcomas, and 27 pituitary blastomas. Pineoblastoma, ETMR, and pituitary blastoma were more likely to carry DICER1 germline mutations, while only a small subset of primary intracranial sarcomas harbored these mutations (p < 0.001). Nearly 80% of tumors with germline mutations also had another somatic mutation in DICER1. ETMR and primary intracranial sarcoma were associated with an increased risk for tumor progression and relapse compared with pituitary blastoma and pineoblastoma (p = 0.0025), but overall survival (OS) was not significantly different. Gross-total resection (GTR) and radiotherapy administration were associated with prolonged OS. CONCLUSIONS ETMR, pineoblastoma, primary intracranial sarcoma, and pituitary blastoma should be considered rare phenotypes of the DICER1 syndrome, and families should be counseled and screened for associated tumors. ETMR and primary intracranial sarcoma had a higher risk of relapse. GTR and radiotherapy appeared to improve the OS of patients with DICER1-mutant malignant intracranial tumors.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma; and
| | - Minh-Khang Le
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ian F. Dunn
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma; and
| |
Collapse
|
14
|
Leelatian N, Goss J, Pastakia D, Dewan MC, Snuderl M, Mobley BC. Primary Intracranial Sarcoma, DICER1-Mutant Presenting as a Pineal Region Tumor Mimicking Pineoblastoma: Case Report and Review of the Literature. J Neuropathol Exp Neurol 2022; 81:762-764. [PMID: 35789272 DOI: 10.1093/jnen/nlac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nalin Leelatian
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Goss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Devang Pastakia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael C Dewan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Medical Center North, Nashville, Tennessee, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and School of Medicine, New York, New York, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Hiemcke-Jiwa L, van Belle S, Eijkelenboom A, Merks J, van Noesel M, Kaal S, Pijnenborg J, Bulten J, Tops B, van de Ven C, van Gorp J, de Krijger R, Cheesman E, Kelsey A, Kester L, Flucke U. Pleuropulmonary blastoma (PPB) and other DICER1-associated high-grade malignancies are morphologically, genetically and epigenetically related – A comparative study of 4 PPBs and 6 sarcomas. Ann Diagn Pathol 2022; 60:152002. [DOI: 10.1016/j.anndiagpath.2022.152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
|
16
|
Meredith DM, Alexandrescu S. Embryonal and non-meningothelial mesenchymal tumors of the central nervous system - Advances in diagnosis and prognostication. Brain Pathol 2022; 32:e13059. [PMID: 35266242 PMCID: PMC9245947 DOI: 10.1111/bpa.13059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022] Open
Abstract
The 5th edition of the WHO Classification of Tumours of the Central Nervous System introduces new entities, and provides updated guidance regarding the diagnostic criteria for tumors of the central nervous system (CNS). CNS embryonal tumors and CNS non‐meningothelial mesenchymal tumors can be challenging for practicing pathologists, as the histologic features are not always specific to a particular entity, and integration of microscopic and molecular findings is necessary. This review on CNS embryonal and non‐meningothelial mesenchymal tumors is meant to provide an update with a focus on WHO changes and additions and on recent discoveries with diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- David M Meredith
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Pratt D, Sahm F, Aldape K. DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology. Neuro Oncol 2021; 23:S16-S29. [PMID: 34725697 PMCID: PMC8561128 DOI: 10.1093/neuonc/noab143] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent years have witnessed a shift to more objective and biologically-driven methods for central nervous system (CNS) tumor classification. The 2016 world health organization (WHO) classification update ("blue book") introduced molecular diagnostic criteria into the definitions of specific entities as a response to the plethora of evidence that key molecular alterations define distinct tumor types and are clinically meaningful. While in the past such diagnostic alterations included specific mutations, copy number changes, or gene fusions, the emergence of DNA methylation arrays in recent years has similarly resulted in improved diagnostic precision, increased reliability, and has provided an effective framework for the discovery of new tumor types. In many instances, there is an intimate relationship between these mutations/fusions and DNA methylation signatures. The adoption of methylation data into neuro-oncology nosology has been greatly aided by the availability of technology compatible with clinical diagnostics, along with the development of a freely accessible machine learning-based classifier. In this review, we highlight the utility of DNA methylation profiling in CNS tumor classification with a focus on recently described novel and rare tumor types, as well as its contribution to refining existing types.
Collapse
Affiliation(s)
- Drew Pratt
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|