1
|
Neyaz A, Chiosea S, Giovannoni I, Mazzocca A, da Gama Lobo L, Skaugen JM, Alaggio R, John I. Further evidence of EWSR1::GFI1B fusion in soft tissue angiofibroma: two new cases. Histopathology 2025; 86:1164-1168. [PMID: 40095263 DOI: 10.1111/his.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Azfar Neyaz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Simon Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Alessandro Mazzocca
- Department of Medical Oncology, Università Campus Bio-medico di Roma, Rome, Italy
| | - Lucas da Gama Lobo
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John M Skaugen
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Ivy John
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins identified in human sarcoma drive YAP/TAZ-independent tumorigenesis by engaging EP300. eLife 2025; 13:RP98386. [PMID: 40338073 PMCID: PMC12061476 DOI: 10.7554/elife.98386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEADs. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in human spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1 the fusion proteins are potent activators of TEAD-dependent transcription, and the function of these fusion proteins does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase EP300 to control TEAD-mediated transcriptional and epigenetic landscapes. We show that small-molecule EP300 inhibition can suppress fusion protein-induced oncogenic transformation both in vitro and in vivo in mouse models. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ritesh P Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
3
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent tumorigenesis by engaging p300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.01.592016. [PMID: 38746415 PMCID: PMC11092657 DOI: 10.1101/2024.05.01.592016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Ritesh P. Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
4
|
Segovia D, Tepes PS. p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 2024; 27:210. [PMID: 38572059 PMCID: PMC10988192 DOI: 10.3892/ol.2024.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion-driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA-fusion-driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA-gene fusion-driven cancers, and explores potential strategies that could be effective in targeting these fusions.
Collapse
Affiliation(s)
- Danilo Segovia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Polona Safaric Tepes
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
5
|
Bakhshwin A, Armstrong SM, Duckworth LA, Stoehr R, Konishi E, Rubin BP, Fritchie KJ, Dickson BC, Agaimy A, Dermawan JK. Novel NCOA2/3-rearranged low-grade fibroblastic spindle cell tumors: A report of five cases. Genes Chromosomes Cancer 2024; 63:e23203. [PMID: 37724942 DOI: 10.1002/gcc.23203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Spindle cell mesenchymal neoplasms are a diverse and often challenging diagnostic group. While morphological impression is sufficient for some diagnoses, increasingly immunohistochemical and even molecular data is required to render an accurate diagnosis, which can lead to the characterization of new entities. We describe five cases of novel mesenchymal neoplasms with rearrangements in the NCOA2 and NCOA3 genes partnered with either CTCF or CRTC1. Three tumors occurred in the head and neck (palate, auditory canal), while the other two were in visceral organs (lung, urinary bladder). All cases occurred in adults (range 33-86) with a median age of 42 and fairly even sex distribution = (male-to-female = 3:2). Morphologically, they had similar features consisting of monotonous, bland spindle to ovoid cells with fascicular and reticular arrangements in a myxohyaline to collagenous stroma. However, immunophenotypically they had essentially a null phenotype, with only two tumors staining partially for CD34 and smooth muscle actin. Targeted RNA sequencing detected in-frame CTCF::NCOA2 (one case), CRTC1::NCOA2 (two cases), and CTCF::NCOA3 (two cases) fusions. Treatment was surgical resection in all cases. Local recurrence and/or distant metastases were not observed in any case (median follow-up, 7.5 months; range, 2-19 months). Given their morphologic, immunohistochemical, and molecular similarities, we believe that these cases may represent an emerging family of low-grade NCOA2/3-rearranged fibroblastic spindle cell neoplasms.
Collapse
Affiliation(s)
- Ahmed Bakhshwin
- King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan M Armstrong
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lauren A Duckworth
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert Stoehr
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eiichi Konishi
- Department Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Brian P Rubin
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen J Fritchie
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Abbas Agaimy
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Josephine K Dermawan
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Bauer AH, Fletcher CDM, Hornick JL, Papke DJ. CYP1A1 immunohistochemistry is highly specific for angiofibroma of soft tissue among morphological mimics. Histopathology 2024; 84:381-386. [PMID: 37855220 DOI: 10.1111/his.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
AIMS Angiofibroma of soft tissue (AFST) is a benign, morphologically distinctive tumour type that harbours recurrent AHRR::NCOA2 fusions in 60-70% of cases and shows a non-specific immunophenotype, expressing EMA in roughly half of cases. The AHRR::NCOA2 fusion results in increased expression of cytochrome P450 1A1 (CYP1A1); a recent study demonstrated CYP1A1 immunohistochemistry (IHC) to be moderately sensitive and highly specific for AFST. METHODS AND RESULTS In this study, we sought to validate these findings in a larger independent cohort of 30 AFST, as well as 215 morphological mimics, including 30 solitary fibrous tumours, 29 myxoid liposarcomas, 28 low-to-intermediate grade myxofibrosarcomas (MFS), 20 atypical spindle cell lipomatous tumours (ASCLT), 20 cellular angiofibromas, 10 cases each of spindle cell lipoma, neurofibroma, malignant peripheral nerve sheath tumour, superficial angiomyxoma, cellular myxoma, soft tissue perineurioma and deep fibrous histiocytoma, and nine cases each of low-grade fibromyxoid sarcoma and mammary-type myofibroblastoma. We found CYP1A1 IHC to be 70% sensitive for AFST, with granular cytoplasmic staining in 21 of 30 tumours, and 98% specific, with staining in only five morphological mimics: two deep fibrous histiocytomas, one MFS, one cellular angiofibroma and one ASCLT. CONCLUSIONS These findings confirm that CYP1A1 is 70% sensitive, consistent with the prevalence of AHRR::NCOA2 fusions that up-regulate this protein, and that it is highly specific among morphological mimics.
Collapse
Affiliation(s)
- Anna H Bauer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Suurmeijer AJ, Cleven AH, Antonescu CR, Duckworth LA, Fritchie KJ, Billings SD, Dermawan JK. Novel EWSR1::GFI1B gene fusion in angiofibroma of soft tissue. Histopathology 2023; 83:959-966. [PMID: 37680034 PMCID: PMC11423792 DOI: 10.1111/his.15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
AIMS Angiofibroma of soft tissue is a benign soft tissue tumour characterised by bland spindle cells and a distinct branching vascular network. The majority of soft tissue angiofibromas harbour AHRR::NCOA2 gene fusions. Here we present three cases of EWSR1::GFI1B-fused soft tissue tumours that are morphologically most reminiscent of soft tissue angiofibroma. METHODS AND RESULTS All three cases presented in male patients with an age range of 35-78 years (median = 54 years). Two cases presented as subcutaneous nodules on the trunk (posterior neck and chest wall); one was an intramuscular foot mass. The tumours were unencapsulated nodules with infiltrative margins ranging from 2.2 to 3.4 cm in greatest dimension. Histologically, the tumours contained uniformly bland fibroblastic spindle cells with ovoid to fusiform nuclei and delicate cytoplasmic processes embedded in a myxoid to myxocollagenous stroma. All three cases were characterised by a thin-walled, branching vascular network evenly distributed throughout the tumour. Overt cytological atypia or conspicuous mitotic activity was absent. The spindle cells had an essentially null immunophenotype. By targeted RNA sequencing, an in-frame gene fusion between EWSR1 exons 1-7 and GFI1B exons 6-11 or 7-11 was detected in all three cases. The tumours were marginally excised. For all three cases, there were no documented local recurrence or distant metastases during a limited follow-up period of 6-10 months. CONCLUSIONS We propose that EWSR1::GFI1B may represent a novel fusion variant of soft tissue angiofibroma.
Collapse
Affiliation(s)
- Albert J.H. Suurmeijer
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjen H.G. Cleven
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Lauren A. Duckworth
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen J. Fritchie
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven D. Billings
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josephine K. Dermawan
- Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Wangsiricharoen S, Gjeorgjievski SG, Bahrami A, Torres-Mora J, Zou YS, Michal M, Charville GW, Gross JM. Non-cutaneous syncytial myoepitheliomas are identical to cutaneous counterparts: a clinicopathologic study of 24 tumors occurring at diverse locations. Virchows Arch 2023; 483:665-675. [PMID: 37548750 DOI: 10.1007/s00428-023-03609-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
AIMS Cutaneous syncytial myoepithelioma (CSM) is a rare myoepithelioma variant of skin, characterized by intradermal syncytial growth of spindle cells with a distinct immunophenotype of EMA and S100 positivity and infrequent keratin expression. While CSM was first described as a cutaneous tumor, singular non-cutaneous cases have since been reported in bone. We aimed to investigate the clinicopathological features of this variant across all anatomic sites through a large multi-institutional study. METHODS AND RESULTS We complied a total of 24 myoepitheliomas with syncytial growth from our files. The tumors occurred in 12 male and 12 female patients (M:F = 1:1), with a median age of 31 years (range, 9-69 years). While the majority of tumors (75%, n = 18) occurred in skin, a significant subset (25%, n = 6) arose in non-cutaneous sites, including bone (n = 3), bronchus/trachea (n = 2), and interosseous membrane of tibia/fibula (n = 1). Tumor size ranged from 0.4 to 5.9 cm. Clinical follow-up (7 patients; range 14-202 months; median 56.5 months) showed a single local recurrence 8 years after incomplete skin excision but no metastases; all patients were alive at the time of last follow-up without evidence of disease. Histologically, all tumors were pink at low-power and characterized by a syncytial growth of bland ovoid, spindled, or histiocytoid cells with eosinophilic cytoplasm and prominent perivascular lymphoplasmacytic inflammation. One-third displayed adipocytic metaplasia (8/24). Rare cytologic atypia was seen but was not associated with increased mitotic activity. All tumors expressed S100, SMA, and/or EMA. Keratin expression was absent in most cases. Molecular analysis was performed in 16 cases, all showing EWSR1-rearrangments. In total, 15/15 (100%) harbored an EWSR1::PBX3 fusion, whereas 1 case EWSR1 FISH was the only molecular study performed. CONCLUSION Syncytial myoepithelioma is a rare but recognizable morphologic variant of myoepithelioma which may have a predilection for skin but also occurs in diverse non-cutaneous sites. Our series provides evidence supporting a reappraisal of the term "cutaneous syncytial myoepithelioma," as 25% of patients in our series presented with non-cutaneous tumors; thus, we propose the term "syncytial myoepithelioma" to aid pathologist recognition and avoidance of potentially confusing terminology when referring to non-cutaneous examples. The behavior of syncytial myoepithelioma, whether it arises in cutaneous or non-cutaneous sites, is indolent and perhaps benign with a small capacity for local recurrence.
Collapse
Affiliation(s)
| | | | - Armita Bahrami
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ying S Zou
- Department of Pathology, Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg Building 2245, Baltimore, MD, 21231, USA
| | - Michael Michal
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Pilsen, Czech Republic
- Bioptical Laboratory, Ltd., Pilsen, Czech Republic
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, 401 N Broadway, Weinberg Building 2245, Baltimore, MD, 21231, USA.
| |
Collapse
|