1
|
Human pegivirus 1 infection in lung transplant recipients: Prevalence, clinical relevance and kinetics of viral replication under immunosuppressive therapy. J Clin Virol 2021; 143:104937. [PMID: 34416522 DOI: 10.1016/j.jcv.2021.104937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human pegivirus 1 (HPgV1) may cause persistent infections in immunocompetent and immunosuppressed individuals. Its clinical relevance, however, has not been determined. Previous studies have described a higher prevalence of HPgV1 infection in organ transplant recipients compared to healthy controls, but its occurrence in lung transplant recipients (LTRs) and its association with immunosuppressive therapy has not been assessed. OBJECTIVES The aim of this study was to evaluate the prevalence and clinical significance of HPgV1 infection in LTRs, and to compare HPgV1 loads and kinetics to Torque Teno Virus (TTV) kinetics, which reflects the level of immunosuppression. STUDY DESIGN From each of 110 LTRs, five consecutive plasma samples were collected within the first year after transplantation and tested for HPgV1 RNA and TTV DNA loads by quantitative PCR. Data were related to demographic data and clinical parameters followed up for 3 years post transplantation. RESULTS HPgV1 prevalence in LTRs was 18,2%. HPgV1 detection was significantly associated with younger age, but not with graft rejections or other microbial infections. The viral replication level remained unaffected by immunosuppressive therapy. This was in contrast to TTV loads which increased after initiation of immunosuppressive therapy, independent of the patients' HPgV1 infection status. CONCLUSIONS In contrast to TTV, HPgV1 kinetics do not reflect the level of immunosuppression after lung transplantation, and there is no correlation between the replication of both persistent viruses in the post transplantation follow up. Thus the individual virus host interactions seem to differ substantially and require further investigation.
Collapse
|
2
|
Zimmerman J, Blackard JT. Human pegivirus type 1 infection in Asia-A review of the literature. Rev Med Virol 2021; 32:e2257. [PMID: 34038600 DOI: 10.1002/rmv.2257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
The human pegivirus type 1 (HPgV-1)-as known as hepatitis G virus and GB virus C-is a common single-stranded RNA flavivirus. Because few studies have demonstrated an association between HPgV-1 infection and disease, screening for HPgV-1 is not performed routinely. Nonetheless, a beneficial impact of HPgV-1 infection on HIV disease progression has been reported in multiple studies. Given the burden of HIV in Asia and the complex interactions between viral co-infections and the host, we provide a comprehensive overview of the existing data from Asia on HPgV-1 infection, including the prevalence and circulating genotypes in all Asian countries with data reported. This review highlights the research conducted thus far and emphasizes the need for additional studies on HPgV-1 across the Asian continent.
Collapse
Affiliation(s)
- Joseph Zimmerman
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Kandathil AJ, Balagopal A. Human Hepegivirus-1: Innocent Traveler, Helpful Symbiote, or Insidious Pathogen? Clin Infect Dis 2021; 71:1229-1231. [PMID: 31671171 DOI: 10.1093/cid/ciz947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Abraham J Kandathil
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashwin Balagopal
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
5
|
Nunes Valença I, Silva-Pinto AC, Araújo da Silva Júnior W, Tadeu Covas D, Kashima S, Nanev Slavov S. Viral metagenomics in Brazilian multiply transfused patients with sickle cell disease as an indicator for blood transfusion safety. Transfus Clin Biol 2020; 27:237-242. [PMID: 32758666 DOI: 10.1016/j.tracli.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Patients with sickle cell disease (SCD) are submitted to multiple transfusions in order to increase the oxygen capacity of the blood, decrease blood viscosity, and suppress the sickling of the cells. Multiply transfused patients with SCD represent significant risk of acquiring parenterally transmitted infections. The analysis of the virome profile of high-risk multiply transfused patients with SCD can reveal the presence of parenterally transmitted viruses and therefore be used an indirect approach for evaluation of blood transfusion safety. MATERIALS AND METHODS Blood samples were collected from 45 patients with SCD receiving multiple transfusions and analyzed by metagenomic analyses. The samples were assembled in pools f which were submitted to nucleic acids extraction and sequencing by Illumina NextSeq 550 equipment. For bioinformatic analysis, we used a specific in-house developed pipeline specialized in identification of emerging viruses. RESULTS The virome composition of SCD patients revealed the presence of commensal viruses represented by anelloviruses and Human Pegivirus-1 (HPgV-1, GB virus C). Contaminant viral sequences belonging to human lentiviruses (rev, env genes), cytomegalovirus and murine leukemia virus were also identified and are attributed to vectors used in the laboratory practice. No novel or unsuspected pathogenic viruses were identified. CONCLUSION This study evaluates for the first time the virome of multiply transfused patients with SCD. Exclusively genetic material of commensal viruses was annotated. Therefore, we believe that viral metagenomics applied in patients with high risk for acquiring parenterally transmitted infections can serve as a direct indicator for evaluation of transfusion safety.
Collapse
Affiliation(s)
- I Nunes Valença
- Post-graduation program in clinical oncology, stem cells and cell therapy, Faculty of Medicine in Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - A C Silva-Pinto
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - W Araújo da Silva Júnior
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - D Tadeu Covas
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - S Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - S Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
7
|
Slavov SN, Maraninchi Silveira R, Hespanhol MR, Sauvage V, Rodrigues ES, Fontanari Krause L, Bittencourt HT, Caro V, Laperche S, Covas DT, Kashima S. Human pegivirus-1 (HPgV-1) RNA prevalence and genotypes in volunteer blood donors from the Brazilian Amazon. Transfus Clin Biol 2019; 26:234-239. [PMID: 31277987 DOI: 10.1016/j.tracli.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate the prevalence of Human Pegivirus-1 (HPgV-1) viremia and genotype diversity among healthy blood donors from the Eastern Brazilian Amazon (city of Macapá, State of Amapá). There is little information for prevalence and circulation of HPgV-1 in this remote Brazilian region. MATERIALS AND METHODS We conducted a study evaluating the HPgV-1 RNA prevalence and circulating genotypes in 431 volunteer blood donors originating from the Eastern Brazilian Amazon. The obtained HPgV-1 positive samples were submitted to sequencing and genotyping analysis in order to examine the genotype diversity of this virus in the Brazilian Amazon. RESULTS Our results demonstrated a prevalence of HPgV-1 RNA in 9.5% of the tested blood donors. The phylogenetic analyses of the detected positive samples showed the presence of HPgV-1 genotypes 1, 2 and 3. The most frequently detected genotype was 2 (78.0% of the cases) represented by sub-genotypes 2A (39.0%) and 2B (39.0%). At lower rates, genotypes 1 (14.6%) and 3 (7.4%) were also detected. CONCLUSION Our results revealed the presence of genotypes with European, Asiatic and African endemicity in Amazonian blood donors, probably due to the complex miscegenation processes that took place in this Brazilian region. More investigations, including information for the prevalence of HPgV-1 RNA in blood donors from other Latin American countries are needed to estimate the viremic rates and genotype distribution of this virus in a highly diverse continent like South America.
Collapse
Affiliation(s)
- S N Slavov
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil.
| | - R Maraninchi Silveira
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil
| | - M R Hespanhol
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil
| | - V Sauvage
- Institut national de la transfusion Sanguine (INTS), département d'études des Agents transmissibles par le sang (DATS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - E S Rodrigues
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil
| | - L Fontanari Krause
- Laboratory of Biosciences, Franciscan University, 97010-030 Santa Maria, Rio Grande do Sul, Brazil
| | - H T Bittencourt
- Institute of Hematology and Hemotherapy of Amapá, 68900-074 Macapá, Amapá, Brazil
| | - V Caro
- Pole for Genotyping of Pathogens (PGP), Laboratory for Urgent Response to Biological Threats, Environment and Infectious Risks Research and Expertise Unit, Institut Pasteur, 75724 Paris, France
| | - S Laperche
- Institut national de la transfusion Sanguine (INTS), département d'études des Agents transmissibles par le sang (DATS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - D T Covas
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil
| | - S Kashima
- Regional Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14051-140 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Molecular and Clinical Profiles of Human Pegivirus Type 1 Infection in Individuals Living with HIV-1 in the Extreme South of Brazil. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8048670. [PMID: 31309117 PMCID: PMC6594344 DOI: 10.1155/2019/8048670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 01/25/2023]
Abstract
Human pegivirus type 1 (HPgV-1) infection has been associated with a beneficial effect on the prognosis of human immunodeficiency virus type 1 (HIV-1)-coinfected individuals. However, the mechanisms involved in this protection are not yet fully elucidated. To date, circulating HPgV-1 genotypes in HIV-1-infected individuals have not yet been identified in the extreme south of Brazil. The present study aimed to determine the genotypic circulation of HPgV-1 and the influence of HPgV-1 status and persistence time on the evolution of HIV-1 infection. A retrospective cohort of 110 coinfected individuals was analyzed. Samples were subjected to viral RNA extraction, cDNA synthesis, nested PCR, and genotyping. Genotypes 1 (2.8%), 2 (47.9% of subtype 2a and 42.3% of subtype 2b), and 3 (7%) were identified. In antiretroviral treatment-naïve subjects HPgV-1 subtype 2b was associated with lower HIV-1 viral load (VL) rates (p = 0.04) and higher CD4+ T-cell counts (p = 0.03) than was subtype 2a, and the positivity for HPgV-1 was associated with higher CD4+ T-cell counts (p = 0.02). However, there was no significant difference in HIV-1 VL between HPgV-1-positive and HPgV-1-negative subjects (p = 0.08). There was no significant association between the different groups in HPgV-1 persistence and median HIV-1 VL (p = 0.66) or CD4+ T-cell counts (p = 0.15). HPgV-1 subtype 2b is associated with better prognosis of HIV-1 infection. Although HPgV-1 infection is persistent, our data suggest that the time of infection does not influence HIV-1 VL or CD4+ T-cell counts in coinfected subjects.
Collapse
|
9
|
Jordier F, Deligny ML, Barré R, Robert C, Galicher V, Uch R, Fournier PE, Raoult D, Biagini P. Human pegivirus isolates characterized by deep sequencing from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations, France. J Med Virol 2018; 91:38-44. [PMID: 30133782 DOI: 10.1002/jmv.25290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023]
Abstract
Human pegivirus (HPgV, formerly GBV-C) is a member of the genus Pegivirus, family Flaviviridae. Despite its identification more than 20 years ago, both natural history and distribution of this viral group in human hosts remain under exploration. Analysis of HPgV genomes characterized up to now points out the scarcity of French pegivirus sequences in databases. To bring new data regarding HPgV genomic diversity, we investigated 16 French isolates obtained from hepatitis C virus-RNA and human immunodeficiency virus-RNA-positive blood donations following deep sequencing and coupled molecular protocols. Initial phylogenetic analysis of 5'-untranslated region (5'-UTR)/E2 partial sequences permitted to assign HPgV isolates to genotypes 2 (n = 15) and 1 (n = 1), with up to 16% genetic diversity observed for both regions considered. Seven nearly full-length representative genomes were characterized subsequently, with complete polyprotein coding sequences exhibiting up to 13% genetic diversity; closest nucleotide (nt) divergence with available HPgV sequences was in the range 7% to 11%. A 36 nts deletion located on the NS4B coding region (N-terminal part, 12 amino acids) of the genotype 1 HPgV genome characterized was identified, along with single nucleotide deletions in two genotype 2, 5'-UTR sequences.
Collapse
Affiliation(s)
- François Jordier
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Marie-Laurence Deligny
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Romain Barré
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Catherine Robert
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Vital Galicher
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Rathviro Uch
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, IRD, Aix Marseille University, SSA, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- UMR MEPHI, IRD, Aix Marseille University, AP-HM, IHU Méditerranée-Infection, Marseille, France
| | - Philippe Biagini
- Biologie des Groupes Sanguins, Etablissement Français du Sang Provence Alpes Côte d'Azur Corse, Aix Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
10
|
Vu DL, Cordey S, Simonetta F, Brito F, Docquier M, Turin L, van Delden C, Boely E, Dantin C, Pradier A, Roosnek E, Chalandon Y, Zdobnov EM, Masouridi-Levrat S, Kaiser L. Human pegivirus persistence in human blood virome after allogeneic haematopoietic stem-cell transplantation. Clin Microbiol Infect 2018; 25:225-232. [PMID: 29787887 DOI: 10.1016/j.cmi.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Because commensal viruses are defined by the immunologic tolerance afforded to them, any immunomodulation, such as is received during haematopoietic stem-cell transplantation, may shift the demarcation between innocuous viral resident and disease-causing pathogen. METHODS We analysed by deep-sequencing the plasma virome of 40 allogeneic haematopoietic stem-cell transplantation patients 1 month after transplantation. Because human pegivirus (HPgV) was highly prevalent, we performed a 1-year screening of 122 plasma samples by specific real-time reverse transcription PCR assay. We used the log-rank test and the Gray test to assess association with outcomes, and the Mann-Whitney test and multivariable linear regression model to assess association with T-cell reconstitution. RESULTS Polyomaviruses (PyV) (20/40 patients), anelloviruses (16/40), pegiviruses (14/40) and herpesviruses (14/40) were most frequently identified, including ten cytomegalovirus; three Epstein-Barr virus; two herpes simplex virus type 1; one human herpesvirus 6b and one human herpesvirus 7; 18 Merkel cell-PyV; two BK-PyV; three PyV-6; and one JC-PyV. Papillomavirus and adenovirus were identified in 11 and two patients, respectively. The HPgV specific real-time reverse transcription PCR screening identified 51 of 122 positive samples, high virus loads and persistent infections up to 1 year after transplantation. Comparison between patients with or without HPgV infection at time of transplantation did not reveal a significant difference in infections, engraftment, survival, graft vs. host disease, relapse or immune reconstitution. CONCLUSIONS The blood virome after allogeneic haematopoietic stem-cell transplantation includes several DNA viruses, notably herpesviruses and PyV. Among RNA viruses, HPgV is highly prevalent and persists for several months, and it thus may deserve special attention in further research on immune reconstitution.
Collapse
Affiliation(s)
- D-L Vu
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Swiss Transplant Cohort Study, Basel, Switzerland.
| | - S Cordey
- Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| | - F Simonetta
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - F Brito
- Faculty of Medicine, Geneva, Switzerland; Swiss Institute of Bioinformatics, Faculty of Medicine, Geneva, Switzerland
| | - M Docquier
- Faculty of Medicine, Geneva, Switzerland
| | - L Turin
- Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| | - C van Delden
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland; Swiss Transplant Cohort Study, Basel, Switzerland
| | - E Boely
- Swiss Transplant Cohort Study, Basel, Switzerland
| | - C Dantin
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - A Pradier
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - E Roosnek
- Faculty of Medicine, Geneva, Switzerland
| | - Y Chalandon
- Faculty of Medicine, Geneva, Switzerland; Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - E M Zdobnov
- Faculty of Medicine, Geneva, Switzerland; Swiss Institute of Bioinformatics, Faculty of Medicine, Geneva, Switzerland
| | - S Masouridi-Levrat
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - L Kaiser
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
11
|
Santos LM, Lobato RC, Barral MFM, Gonçalves CV, da Hora VP, Martinez AMB. Prevalence and vertical transmission of human pegivirus among pregnant women infected with HIV. Int J Gynaecol Obstet 2017; 138:113-118. [PMID: 28391635 DOI: 10.1002/ijgo.12175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/25/2017] [Accepted: 04/06/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine the prevalence of human pegivirus (HPgV) and factors associated with vertical transmission among pregnant women infected with HIV. METHOD A retrospective cross-sectional study was conducted among pregnant women treated at an HIV reference service in Rio Grande, Brazil, between January 1, 2010, and January 1, 2015. The polymerase chain reaction was used to diagnose HPgV infection among the women and their neonates. Clinical, obstetric, and neonatal data were obtained from medical records. RESULTS Infection with HPgV was detected among 16 (25%) of 63 women and 5 (8%) of 63 newborns, corresponding to a vertical transmission rate of 31%. Multivariate analysis demonstrated that the absence of prenatal care was the only risk factor for vertical transmission of HPgV (prevalence ratio 19.61, 95% confidence interval 1.29-297.48; P=0.032). CONCLUSION Prenatal care could protect against vertical transmission of HPgV among women infected with HIV; however, studies among HIV-negative individuals are still required to verify this correlation.
Collapse
Affiliation(s)
- Lucas M Santos
- Laboratory of Molecular Biology, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Rubens C Lobato
- Laboratory of Molecular Biology, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Maria Fernanda M Barral
- Laboratory of Molecular Biology, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Carla V Gonçalves
- Medicine Faculty, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Vanusa P da Hora
- Laboratory of Molecular Biology, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ana Maria B Martinez
- Laboratory of Molecular Biology, University Hospital, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
12
|
Rinonce HT, Yano Y, Utsumi T, Heriyanto DS, Anggorowati N, Widasari DI, Ghozali A, Utoro T, Lusida MI, Soetjipto, Prasanto H, Hayashi Y. Prevalence and genotypic distribution of GB virus C and torque teno virus among patients undergoing hemodialysis. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Jõgeda EL, Huik K, Pauskar M, Kallas E, Karki T, Des Jarlais D, Uusküla A, Lutsar I, Avi R. Prevalence and genotypes of GBV-C and its associations with HIV infection among persons who inject drugs in Eastern Europe. J Med Virol 2016; 89:632-638. [PMID: 27603233 DOI: 10.1002/jmv.24683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/26/2022]
Abstract
We aimed to determine the rate of GBV-C viremia, seropositivity, and genotypes among people who inject drugs (PWID) and healthy volunteers in Estonia and to evaluate associations between GBV-C and sociodemographic factors, intravenous drug use, co-infections. The study included 345 Caucasian PWID and 118 healthy volunteers. The presence of GBV-C RNA (viremia) was determined by reverse transcriptase-nested PCR in 5' long terminal repeat. PCR products were sequenced and genotyped by phylogenetic analysis. GBV-C seropositivity was determined by ELISA. One third of PWID (114/345) and 6% (7/118) of healthy volunteers (OR = 7.8, 95% CI = 3.5-20.5, P < 0.001) were GBV-C viremic. In PWID group, 79% of sequences belonged to subtype 2a, 19% to subtype 2b, and two remained unclassified. In healthy volunteers, six out of seven sequences belonged to subtype 2a and one to subtype 2b. We found HIV+ PWID to have two times increased odds of being GBV-C viremic compared to HIV- PWID (62% vs. 38%; OR = 2.13, 95% CI = 1.34-3.36, P = 0.001). In addition, odds of being GBV-C viremic decreased with increasing age (OR = 0.94, 95% CI = 0.90-0.98, P = 0.001). HIV positivity remained associated with GBV-C viremia in multivariate analysis after adjustment for age (OR = 2.23, 95% CI = 1.39-3.58, P = 0.001). GBV-C seropositivity was similar among PWID and healthy volunteers (2.3% vs. 1.7%, respectively; OR = 1.4, 95% CI =0.3-13.5, P = 1). In an Eastern European country we demonstrated that GBV-C viremia is common among PWID, but uncommon among healthy volunteers, and GBV-C seropositivity is infrequent among both groups. Similarly to other European countries and USA, GBV-C 2a is the most common genotype in Estonia. J. Med. Virol. 89:632-638, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ene-Ly Jõgeda
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Huik
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Merit Pauskar
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eveli Kallas
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tõnis Karki
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Anneli Uusküla
- Faculty of Medicine, Department of Epidemiology and Biostatistics, Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Irja Lutsar
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Radko Avi
- Faculty of Medicine, Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
CD4/CD8 Ratio Predicts Yellow Fever Vaccine-Induced Antibody Titers in Virologically Suppressed HIV-Infected Patients. J Acquir Immune Defic Syndr 2016; 71:189-95. [PMID: 26361176 DOI: 10.1097/qai.0000000000000845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Yellow fever vaccine (YFV) induces weaker immune responses in HIV-infected individuals. However, little is known about YFV responses among antiretroviral-treated patients and potential immunological predictors of YFV response in this population. METHODS We enrolled 34 antiretroviral therapy (ART)-treated HIV-infected and 58 HIV-uninfected adults who received a single YFV dose to evaluate antibody levels and predictors of immunity, focusing on CD4(+) T-cell count, CD4(+)/CD8(+) ratio, and Human Pegivirus (GBV-C) viremia. Participants with other immunosuppressive conditions were excluded. RESULTS Median time since YFV was nonsignificantly shorter in HIV-infected participants than in HIV-uninfected participants (42 and 69 months, respectively, P = 0.16). Mean neutralizing antibody (NAb) titers was lower in HIV-infected participants than HIV-uninfected participants (3.3 vs. 3.6 log10mIU/mL, P = 0.044), a difference that remained significant after adjustment for age, sex, and time since vaccination (P = 0.024). In HIV-infected participants, lower NAb titers were associated with longer time since YFV (rho: -0.38, P = 0.027) and lower CD4(+)/CD8(+) ratio (rho: 0.42, P = 0.014), but not CD4(+) T-cell count (P = 0.52). None of these factors were associated with NAb titers in HIV-uninfected participant. GBV-C viremia was not associated with difference in NAb titers overall or among HIV-infected participants. CONCLUSIONS ART-treated HIV-infected individuals seem to have impaired and/or less durable responses to YFV than HIV-uninfected individuals, which were associated with lower CD4(+)/CD8(+) ratio, but not with CD4(+) T-cell count. These results supports the notion that low CD4(+)/CD8(+) ratio, a marker linked to persistent immune activation, is a better indicator of functional immune disturbance than CD4(+) T-cell count in patients with successful ART.
Collapse
|
15
|
Da Mota LD, Nishiya AS, Finger-Jardim F, Barral MFM, Silva CM, Nader MM, Gonçalves CV, Da Hora VP, Silveira J, Basso RP, Soares MA, Levi JE, Martínez AMB. Prevalence of human pegivirus (HPgV) infection in patients carrying HIV-1C or non-C in southern Brazil. J Med Virol 2016; 88:2106-2114. [PMID: 27171504 DOI: 10.1002/jmv.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/06/2022]
Abstract
Previous studies have demonstrated that coinfection with HPgV is a protective factor for human immunodeficiency virus (HIV)-infected patients, leading to slower disease progression, and longer survival after established disease. The present study sought to estimate the prevalence of HPgV infection and associated risk factors in patients harboring C or non-C HIV-1 subtypes followed-up at HU-FURG, southern Brazil. Samples from 347 HIV-1-infected subjects were subjected to plasma RNA extraction, cDNA synthesis, HPgV RNA detection, and HIV-1 genotyping. The overall prevalence of HPgV RNA was 34%. Individuals aged 18-30 years had higher chances of infection compared with those 50 years or older (95%CI 1.18-52.36, P = 0.03). The number of sexual partner between one and three was a risk factor for HPgV infection (95%CI 1.54-10.23; P < 0.01), as well as the time since diagnosis of HIV-1 ≥ 11 years (95%CI 1.01-2.89; P = 0.04). Patients infected with HIV non-C subtypes had six times more chance of being HPgV-infected when compared to subtype C-infected subjects (95%CI 2.28-14.78; P < 0.01). This was the first study conducted in southern Brazil to find the circulation of HPgV. HIV/HPgV coinfection was associated with a longer survival among HIV+ patients. Of novelty, individuals infected by HIV non-C subtypes were more susceptible to HPgV infection. However, additional studies are needed to correlate the HIV-1 subtypes with HPgV infection and to clarify cellular and molecular pathways through which such associations are ruled. J. Med. Virol 88:2106-2114, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Luísa Dias Da Mota
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil.
| | | | | | - Maria F M Barral
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Cláudio M Silva
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Maiba M Nader
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | | | - Vanusa P Da Hora
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Jussara Silveira
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Rossana P Basso
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| | - Marcelo A Soares
- Genetics Program, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Ana M B Martínez
- Medical School of the Federal University of Rio Grande, Rio Grande do sul, Brazil
| |
Collapse
|