1
|
Khalid M, Farooq M, Adnan M, Kobe S, Mayakrishnan G, Kim IS. Green and Sustainable Electrospun Poly(vinyl alcohol)/Eggshell Nanofiber Membrane with Lemon-Honey for Facial Mask Development. ACS OMEGA 2025; 10:12972-12982. [PMID: 40224462 PMCID: PMC11983336 DOI: 10.1021/acsomega.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/15/2025]
Abstract
Facial masks contain additives such as thickeners and preservatives that have adverse effects on the skin, and there is growing demand for organic products. Inspired by this, we developed a poly(vinyl alcohol) (PVA) nanofibrous facial mask that contains all-natural ingredients such as honey and an eggshell membrane (ESM) by a green solvent-based electrospinning technique. Various analyses, including SEM, XRD, FT-IR, and TGA measurements, and tests for water solubility, wettability, water absorption and retention, antioxidant activity, and antibacterial properties were performed. SEM analysis showed average diameters from 257 to 325 nm. XRD results indicated decreased crystallinity after cross-linking. FT-IR measurements confirmed ester and acetal cross-link formation. TGA demonstrated enhanced thermal stability in cross-linked samples, especially PVA10%_lemon/esm10/honey20-H. Water solubility tests showed that heated samples were more stable. Water absorption rates exceeded 400%, with PVA10%_lemon/esm10/honey20-H having the highest retention rate. Wettability analysis showed significant changes in contact angles after heating. Antioxidant assays revealed that PVA10%_lemon had the highest DPPH activity (71.2%) among unheated samples, decreasing after cross-linking. Antibacterial tests showed significant activity only in PVA10%_lemon/esm10/honey20, against both Escherichia coli and Bacillus subtilis bacteria. Active ingredients can be added directly to this facial mask. This facial mask is gentler on the skin, and its ingredients have antiaging and anti-inflammatory properties. This mask can avoid the use of preservatives. This prepared facial mask has potential to be used in the organic skincare product industry and can also help the chemical industry toward sustainable and healthy practices.
Collapse
Affiliation(s)
- Maira Khalid
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Muhammad Farooq
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Muhammad Adnan
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Shoki Kobe
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Gopiraman Mayakrishnan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Ick Soo Kim
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| |
Collapse
|
2
|
Tahir R, Albargi HB, Ahmad A, Qadir MB, Khaliq Z, Nazir A, Khalid T, Batool M, Arshad SN, Jalalah M, Alsareii SA, Harraz FA. Development of Sustainable Hydrophilic Azadirachta indica Loaded PVA Nanomembranes for Cosmetic Facemask Applications. MEMBRANES 2023; 13:156. [PMID: 36837659 PMCID: PMC9959350 DOI: 10.3390/membranes13020156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.
Collapse
Affiliation(s)
- Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan
| | - Tanzeela Khalid
- Department of Dermatology, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Saeed A. Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
3
|
Pandit P, Maity S, Singha K, Annu, Uzun M, Shekh M, Ahmed S. Potential biodegradable face mask to counter environmental impact of Covid-19. CLEANER ENGINEERING AND TECHNOLOGY 2021; 4:100218. [PMID: 34322678 PMCID: PMC8297964 DOI: 10.1016/j.clet.2021.100218] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 10/02/2023]
Abstract
On the eve of the outbreak of the COVID-19 pandemic, there is a tremendous increase in the production of facemasks across the world. The primary raw materials for the manufacturing of the facemasks are non-biodegradable synthetic polymers derived from petrochemicals. Disposal of these synthetic facemasks increases waste-load in the environment causing severe ecological issues for flora and fauna. The synthesis processes of the polymers from the petrochemical by-products were also not eco-friendly, which releases huge greenhouse and harmful gases. Therefore, many research organizations and entrepreneurs realize the need for biodegradable facemasks to render similar performance as the existing non-biodegradable masks. The conventional textile fabrics made of natural fibers like cotton, flax, hemp, etc., can also be used to prepare facemasks with multiple layers in use for general protection. Such natural textile masks can be made anti-microbial by applying various herbal anti-microbial extracts like turmeric, neem, basil, aloe vera, etc. As porosity is the exclusive feature of the masks for arresting tiny viruses, the filter of the masks should have a pore size in the nanometre scale, and that can be achieved in nanomembrane manufactured by electrospinning technology. This article reviews the various scopes of electrospinning technology for the preparation of nanomembrane biomasks. Besides protecting us from the virus, the biomasks can be useful for skin healing, skincare, auto-fragrance, and organized cooling which are also discussed in this review article.
Collapse
Affiliation(s)
- Pintu Pandit
- National Institute of Fashion Technology, Department of Textile Design, Mithapur Farms, Patna, 800001, India
| | - Subhankar Maity
- Department of Textile Technology, Uttar Pradesh Textile Technology Institute, Kanpur, 208001, India
| | - Kunal Singha
- National Institute of Fashion Technology, Department of Textile Design, Mithapur Farms, Patna, 800001, India
| | - Annu
- Lecturer in Chemistry, Higher Education Department, Government of Jammu and Kashmir, India
- Department of Chemistry, Government Degree College Samba, Jammu and Kashmir, 184121, India
| | - Muhammet Uzun
- Department of Textile Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
- Centre for Nanotechnology and Biomaterials Applied and Research, Marmara University, Istanbul, Turkey
| | - Mehdihasan Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu and Kashmir, 185211, India
- Higher Education Department, Government of Jammu and Kashmir, India
| |
Collapse
|
4
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
5
|
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 2020; 156:20-39. [DOI: 10.1016/j.ejpb.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
|