1
|
Yang Y, Deng K, Jiang S, Guo X, Zhong Y, Wu B, Wei L. Punicalagin ameliorates lipopolysaccharide-induced inflammatory response in dental pulp cells via inhibition of the NF-κB/Wnt5a-ROR2 pathway. Immunopharmacol Immunotoxicol 2025:1-11. [PMID: 39994845 DOI: 10.1080/08923973.2025.2470343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Punicalagin (PCG) is a major polyphenolic component with potent anti-inflammatory, anti-atherogenic, anti-cancer, and antioxidant activities. This study aimed to investigate the impact and underlying mechanisms of PCG on lipopolysaccharide (LPS)-induced dental pulpitis. METHODS A rat pulpitis model was constructed, and the infected pulp was covered with a PCG collagen sponge. In vitro, dental pulp cells (DPCs) were isolated, and the effects of LPS and PCG on cell viability were assessed. The expression levels of inflammation-related factors were investigated by qRT-PCR and ELISA. The Nuclear Factor kappa B (NF-κB) transcription factors and Wnt family member 5a-Receptor tyrosine kinase like Orphan Receptor 2 (Wnt5a-ROR2) levels were evaluated by immunofluorescence staining and Western blotting. RESULTS We demonstrated that the PCG collagen sponge effectively reduced the infiltration of inflammatory cells in the pulp. PCG significantly alleviated the inflammatory response by reducing the mRNA expression levels of IL-1β, IL-6, IL-8, ICAM-1, and VCAM-1 and the secretion of IL-6 and IL-8 in a concentration-dependent manner. Immunofluorescence staining showed that the activation of the NF-κB pathway was hindered by PCG, which affected with the nuclear translocation of P65. PCG reduced the phosphorylation levels of P65 and IκBα and suppressed the expression levels of Wnt5a and ROR2 induced by LPS. The NF-κB inhibitor Bay11-7082 reduced the activation of the NF-κB/Wnt5a-ROR2 pathway and the inflammatory response; the application of PCG significantly augmented this inhibitory effect. DISCUSSION PCG demonstrated an anti-inflammatory effect in LPS-induced DPCs by targeting the NF-κB/Wnt5a-ROR2 signaling pathway.
Collapse
Affiliation(s)
- Yumeng Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Jiang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Xiaolan Guo
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiming Zhong
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Liu Wei
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Shenzhen, China
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| |
Collapse
|
2
|
Lv X, Luo C, Wu J, Huang Y, Quan J, Gong Q, Tong Z. Integration of single-cell RNA sequencing of endothelial cells and proteomics to unravel the role of ICAM1-PTGS2 communication in apical periodontitis: A laboratory investigation. Int Endod J 2024; 57:1228-1246. [PMID: 38713190 DOI: 10.1111/iej.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
AIM Endothelial cells (EDs) play a key role in angiogenesis and are associated with granulomatous lesions in patients with chronic apical periodontitis (CAP). This study aimed to investigate the diversity of EDs using single-cell ribonucleic acid sequencing (scRNA-seq) and to evaluate the regulation of intercellular adhesion molecule 1 (ICAM1) on the ferroptosis-related protein, prostaglandin-endoperoxide synthase 2 (PTGS2), in CAP. METHODOLOGY EDs from the uploaded scRNA-seq data of five CAP samples (GSE181688 and GSE197680) were categorized using distinct marker genes. The interactions between vein EDs (veinEndo) and other cell types were analysed using CellPhoneDB. Differentially expressed proteins in the proteomics of human umbilical vein EDs (HUVECs) and THP-1-derived macrophages infected with Porphyromonas gingivalis were compared with the differentially expressed genes (DEGs) of VeinEndo in scRNA-seq of CAP versus healthy control periodontal tissues. The protein-protein interaction of ICAM1-PTGS2 in macrophages and HUVECs was validated by adding recombinant ICAM1, ICAM1 inhibitor and PTGS2 inhibitor using real-time polymerase chain reaction (PCR), western blotting, and immunofluorescence staining. RESULTS EDs in patients with CAP were divided into eight subclusters: five vein ED, capillaries, arterials and EC (PLA). There were 29 mutually upregulated DEGs and two mutually downregulated DEGs in vein cells in the scRNA-seq data, as well as differentially expressed proteins in the proteomics of HUVECs. Real-time PCR and immunofluorescence staining showed that ICAM1 and PTGS2 were highly expressed in CAP, infected HUVECs, and macrophages. Recombinant protein ICAM1 may improve PTGS2 expression, reactive oxygen species (ROS), and Fe2+ levels and decrease glutathione peroxidase 4 (GPX4) and SLC7A11 protein levels. ICAM1 inhibitor may inverse the above changes. CONCLUSIONS scRNA-seq revealed the diversity of EDs in CAP and identified the possible regulation of ICAM1 by the ferroptosis-related protein, PTGS2, in infected HUVECs and macrophages, thus providing a basis for therapeutic approaches that target the inflammatory microenvironment of CAP.
Collapse
Affiliation(s)
- Xiaomin Lv
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cuiting Luo
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingjing Quan
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qimei Gong
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongchun Tong
- Hosiptal of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Liu J, Wang J, Ren J, Yang Q, Zhan W, Wang M, Hao L, Yue Y. Inhibition of receptor-interacting protein kinase-3 in the necroptosis pathway attenuates inflammatory bone loss in experimental apical periodontitis in Balb/c mice. Int Endod J 2021; 54:1538-1547. [PMID: 33896018 DOI: 10.1111/iej.13534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/18/2021] [Indexed: 02/05/2023]
Abstract
AIM To explore the role of necroptosis in apical periodontitis (AP), this study investigated necroptosis in a Fusobacterium nucleatum (Fn)-induced AP model of Balb/c mice and explored related intracellular signalling pathways in L929 cells affected by Fn. METHODOLOGY For the in vivo experiments, expression of receptor-interacting protein kinase-3 (RIP3) was inhibited using an adeno-associated virus and then the Balb/c mice model of AP was established by injecting Fn into the root canal of the first mandibular molars. Bone loss and number of osteoclasts were measured via micro-computed tomography and tartrate-resistant acid phosphatase staining, respectively; expression of RIP3 and phosphorylated mixed lineage kinase domain-like protein (pMLKL) was detected by immunohistochemistry and western blotting; expression of mRNA of inflammatory cytokines was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). For the in vitro experiments, L929 cells transfected with RIP3-Mus-siRNA or negative control siRNA were co-cultured with Fn; thereafter, western blotting, detection of cell death and viability and qRT-PCR analyses were performed to assess the activation of necroptosis pathway and expression of mRNA of inflammatory cytokines. Data were analysed with unpaired t-test and one-way analysis of variance with significance set at p < .05. RESULTS The Fn-induced apical lesions were associated with apical bone loss, an increased number of osteoclasts, enhanced expression of pMLKL and increased mRNA levels of inflammatory cytokines(IL-1α and IL-1β); all these effects were alleviated by RIP3 inhibition (p < .05). L929 cells infected with Fn displayed increased expression of pMLKL and increased cell death (p < .05), together with decreased cell viability (p < .05), whilst transfection with RIP3-Mus-siRNA decreased the mRNA expression of inflammatory cytokines(TNF-α and IL-6, p < .05). CONCLUSIONS Necroptosis may be involved in AP progression. RIP3 inhibition ameliorated the expression of inflammatory cytokines and bone resorption in Fn-induced AP lesions in Balb/c mice.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jiajia Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qin Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weicheng Zhan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yuan Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
5
|
Chen M, Zeng J, Yang Y, Wu B. Diagnostic biomarker candidates for pulpitis revealed by bioinformatics analysis of merged microarray gene expression datasets. BMC Oral Health 2020; 20:279. [PMID: 33046027 PMCID: PMC7552454 DOI: 10.1186/s12903-020-01266-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. Results A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1. Conclusions With bioinformatics analysis of merged datasets, biomarker candidates of pulpitis were screened and the findings may be as reference to develop a new method of pulpitis diagnosis.
Collapse
Affiliation(s)
- Ming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Junkai Zeng
- School of Stomatology, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China. .,Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, 510515, P.R. China.
| |
Collapse
|