1
|
Li M, Li J, Wang Y, Jiang G, Jiang H, Li M, Zhu Z, Ren F, Wang Y, Yan M, Chang Z. Umbilical cord-derived mesenchymal stem cells preferentially modulate macrophages to alleviate pulmonary fibrosis. Stem Cell Res Ther 2024; 15:475. [PMID: 39696548 DOI: 10.1186/s13287-024-04091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is a type of interstitial lung disease characterized by chronic inflammation due to persistent lung damage. Mesenchymal stem cells (MSCs), including those derived from the umbilical cord (UCMSCs) and placenta (PLMSCs), have been utilized in clinical trials for IPF treatment. However, the varying therapeutic effectiveness between these two MSC types remains unclear. METHODS In this study, we examined the therapeutic differences between UCMSCs and PLMSCs in treating lung damage using a bleomycin (BLM)-induced pulmonary injury mouse model. RESULTS We showed that UCMSCs had a superior therapeutic impact on lung damage compared to PLMSCs. Upon cytokine stimulation, UCMSCs expressed higher levels of inflammation-related genes and more effectively directed macrophage polarization towards the M2 phenotype than PLMSCs, both in vitro and in vivo. Furthermore, UCMSCs showed a preference for expressing CC motif ligation 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1) compared to PLMSCs. The expression of secreted phosphoprotein 1 (SPP1), triggering receptor expressed on myeloid cells 2 (Trem2), and CCAAT enhancer binding protein beta (Cebpb) in macrophages from mice with the disease treated with UCMSCs was significantly reduced compared to those treated with PLMSCs. CONCLUSIONS Therefore, UCMSCs demonstrated superior anti-fibrotic abilities in treating lung damage, potentially through inducing a more robust M2 polarization of macrophages than PLMSCs.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Heya Pharmaceutical Technology Company, Beijing, 100176, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Guancheng Jiang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Hanguo Jiang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Ziying Zhu
- First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Muyang Yan
- First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Basic Medical Sciencese, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Teppan J, Schwanzer J, Rittchen S, Bärnthaler T, Lindemann J, Nayak B, Reiter B, Luschnig P, Farzi A, Heinemann A, Sturm E. The disrupted molecular circadian clock of monocytes and macrophages in allergic inflammation. Front Immunol 2024; 15:1408772. [PMID: 38863703 PMCID: PMC11165079 DOI: 10.3389/fimmu.2024.1408772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Macrophage dysfunction is a common feature of inflammatory disorders such as asthma, which is characterized by a strong circadian rhythm. Methods and results We monitored the protein expression pattern of the molecular circadian clock in human peripheral blood monocytes from healthy, allergic, and asthmatic donors during a whole day. Monocytes cultured of these donors allowed us to examine circadian protein expression in human monocyte-derived macrophages, M1- and M2- polarized macrophages. In monocytes, particularly from allergic asthmatics, the oscillating expression of circadian proteins CLOCK, BMAL, REV ERBs, and RORs was significantly altered. Similar changes in BMAL1 were observed in polarized macrophages from allergic donors and in tissue-resident macrophages from activated precision cut lung slices. We confirmed clock modulating, anti-inflammatory, and lung-protective properties of the inverse ROR agonist SR1001 by reduced secretion of macrophage inflammatory protein and increase in phagocytosis. Using a house dust mite model, we verified the therapeutic effect of SR1001 in vivo. Discussion Overall, our data suggest an interaction between the molecular circadian clock and monocytes/macrophages effector function in inflammatory lung diseases. The use of SR1001 leads to inflammatory resolution in vitro and in vivo and represents a promising clock-based therapeutic approach for chronic pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Julia Teppan
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Juliana Schwanzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Jörg Lindemann
- Department of Surgery, Division of Thoracic and Hyperbaric Surgery, Medical University of Graz, Graz, Austria
| | - Barsha Nayak
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Bernhard Reiter
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Petra Luschnig
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Gao P, Liu C, Dong H, Li Q, Chen Y. TGF-β promotes the proliferation and osteogenic differentiation of dental pulp stem cells a systematic review and meta-analysis. Eur J Med Res 2023; 28:261. [PMID: 37501191 PMCID: PMC10373408 DOI: 10.1186/s40001-023-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) are adult stem cells with multi-directional differentiation potential derived from ectoderm. Vitro experiments have shown that adding cytokines can help DPSCs to be transformed from multipotent stem cells to osteoblasts. TGF-β has been proved to have an effect on the proliferation and mineralization of bone tissue, but its effect on the osteogenesis and proliferation of dental pulp stem cells is still uncertain. We aim to determine the effect of TGF-β on the osteogenesis and proliferation of dental pulp stem cells. METHODS We have identified studies from the Cochrane Central Register of Controlled Trials, PubMed, Embase, and China national knowledge infrastructure (CNKI) for studies interested in TGF-β and proliferation and differentiation of dental pulp stem cells in the following indicators: A490 (an index for evaluating cell proliferation), bone sialoprotein (BSP), Col plasmid-1 (Col-1), osteocalcin (OCN), runt-related transcription factor 2 (Runx-2); and the number of mineralized nodules. Any language restrictions were rejected. Furthermore, we drew a forest plot for each outcome. We conducted a sensitivity analysis, data analysis, heterogeneity, and publication bias test. We evaluate the quality of each study under the guidance of Cochrane's tool for quality assessment. RESULTS The pooled data showed that TGF-β could promote the proliferation and ossification of dental pulp stem cells. All the included results support this conclusion except for the number of mineralized nodules: TGF-β increases the A490 index (SMD 3.11, 95% CI [0.54-5.69]), promotes the production of BSP (SMD 3.11, 95% CI [0.81-6.77]), promotes the expression of Col-1 (SMD 4.71, 95% CI [1.25-8.16]) and Runx-2 (SMD 3.37, 95% CI [- 0.63 to 7.36]), increases the content of OCN (SMD 4.32, 95% CI [1.20-7.44]) in dental pulp, and has no significant effect on the number of mineralized nodules (SMD 3.87, 95% CI [- 1.76 to 9.51]) in dental pulp stem cells. CONCLUSIONS TGF-β promotes the proliferation and osteogenesis of dental pulp stem cells.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chanjuan Liu
- Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Hui Dong
- Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Qi Li
- Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunfang Chen
- Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China.
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
4
|
Gopinath VK, Mohammad MG, Sheela S. Immunomodulatory effect of IL-1RA in LPS-activated macrophage/dental pulp stem cells co-culture. Int Endod J 2023; 56:27-38. [PMID: 36190353 DOI: 10.1111/iej.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
AIMS Lipopolysaccharides (LPS)-activated human dental pulp stem cells (hDPSCs) and macrophage co-cultures showed downregulated TNF-α secretion that is modulated by hDPSCs through IDO axis, whereas the secretory levels of IL-1β remained unchanged. Therefore, sustained production of IL-1β could contribute to progressive dental pulp inflammation. However, the role of interleukin-1 receptor antagonist (IL-1RA) in downregulating the secretion of IL-1β and TNF-α in LPS-activated M0/M1/M2 macrophage and hDPSCs co-culture has not been studied yet. Therefore, the aim of the present study was to determine the immunomodulatory role of blocking IL-1 receptors in DPSCs macrophage co-culture activated with LPS. METHODOLOGY Human monocytic cell line THP-1 was polarized to M0, M1 and M2 macrophages and co-cultured with hDPSCs. The viability of the co-cultured cells was assessed by apoptosis assay. Co-cultures were activated with LPS followed by the assessment of gene expression and protein levels of IL-1β and TNF-α with and without IL-1RA blocking via qRT-PCR and cytokine flex assay by flow cytometry. Data from three separate experiments were analysed using one-way anova followed by Tukey's post hoc test and a p-value of <.05 was considered statistically significant. RESULTS THP-1-derived M0, M1 and M2 macrophages co-cultured with hDPSCs showed spindle and round-shaped cells, with >90% viability when assessed by apoptosis assay. Inflammatory TNF-α and IL-1β profiles in stimulated co-cultures showed upregulated IL-1β, whereas TNF-α was downregulated (p < .05). Anti-inflammatory gene expression levels of IL-10 and TGF-β were downregulated (p < .05). Blocking with IL-1RA resulted in a remarkable decrease in IL-1β at the gene expression and protein production levels whilst TNF-α levels remained low (p < .05). Levels of anti-inflammatory cytokine IL-10 showed no significant difference. CONCLUSION Blocking the IL-1 receptor in hDPSCs and macrophage (M0, M1, M2) co-cultures activated with LPS resulted in downregulation of inflammatory cytokines IL-1β and TNF-α. These findings highlight the immunomodulatory effect of IL-1RA in inflammatory conditions of dental pulp infections.
Collapse
Affiliation(s)
- Vellore Kannan Gopinath
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mohammad G Mohammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| |
Collapse
|
5
|
Hou X, Shen Y, Sun M, Zhang B, Dai J, Chen D, Liu Z. Effect of regulating macrophage polarization phenotype on intervertebral disc degeneration. Immun Inflamm Dis 2022; 10:e714. [PMID: 36301028 PMCID: PMC9609449 DOI: 10.1002/iid3.714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background Macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus and their polarization plays an important role in intervertebral disc degeneration (IVDD). This paper attempted to investigate the pathogenesis of IVDD by altering the polarization state of macrophages. Methods Macrophage RAW264.7 cells were induced by interferonγ (IFN‐γ) and lipopolysaccharide (LPS). The polarization of RAW264.7 cells was estimated by western blot and immunofluorescence. The expressions of inflammatory factors were detected by ELISA. Subsequently, RAW264.7 cells were treated with different concentrations of minocycline (Mino) and sinomenine (Sino), followed by the assessment of cell viability with cell counting kit‐8 kit. Then, RAW264.7 cell culture medium was collected for the culture of human nucleus pulposus cells (NPCs). Toluidine blue staining and type II collagen staining were applied to assay the level of type II collagen. The cell apoptosis, oxidative stress, and nitric oxide (NO) level were appraised by TUNEL, oxidative stress kits and NO kit, respectively. Western blot was employed to test the levels of apoptosis‐ and oxidative stress‐related proteins. Results IFN‐γ and LPS could induce M1 polarization of RAW264.7 cells. Mino and Sino could reduce the polarization of RAW264.7 cells toward M1. M1‐polarized medium inhibited LPS‐induced activity, inflammation, and damage of NPCs, which were enhanced by Mino and Sino in medium. Conclusion M1 polarization of macrophages promoted LPS‐induced inflammation and damage of NPCs.
Collapse
Affiliation(s)
- Xuefeng Hou
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Yucheng Shen
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Minli Sun
- Department of GeriatricsBinhai County People's HospitalBinhaiJiangsu ProvinceChina
| | - Bing Zhang
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Jiuming Dai
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Dong Chen
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Zhidong Liu
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| |
Collapse
|
6
|
Thiamine pretreatment improves endotoxemia-related liver injury and cholestatic complications by regulating galactose metabolism and inhibiting macrophage activation. Int Immunopharmacol 2022; 108:108892. [DOI: 10.1016/j.intimp.2022.108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022]
|