1
|
Li D, Jiu J, Liu H, Yan X, Li X, Yan L, Zhang J, Fan Z, Li S, Du G, Li JJ, Du Y, Liu W, Wang B. Tissue-engineered mesenchymal stem cell constructs alleviate tendinopathy by suppressing vascularization. Bioact Mater 2024; 36:474-489. [PMID: 39055350 PMCID: PMC11269794 DOI: 10.1016/j.bioactmat.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Tendinopathy leads to low-grade tissue inflammation and chronic damage, which progresses due to pathological imbalance in angiogenesis. Reducing early pathological vascularization may be a new approach in helping to regenerate tendon tissue. Conventional stem cell therapy and tissue engineering scaffolds have not been highly effective at treating tendinopathy. In this study, tissue engineered stem cells (TSCs) generated using human umbilical cord mesenchymal stem cells (hUC-MSCs) were combined with microcarrier scaffolds to limit excessive vascularization in tendinopathy. By preventing VEGF receptor activation through their paracrine function, TSCs reduced in vitro angiogenesis and the proliferation of vascular endothelial cells. TSCs also decreased the inflammatory expression of tenocytes while promoting their anabolic and tenogenic characteristics. Furthermore, local injection of TSCs into rats with collagenase-induced tendinopathy substantially reduced early inflammation and vascularization. Mechanistically, transcriptome sequencing revealed that TSCs could reduce the progression of pathological angiogenesis in tendon tissue, attributed to Rap1-mediated vascular inhibition. TSCs may serve as a novel and practical approach for suppressing tendon vascularization, and provide a promising therapeutic agent for early-stage clinical tendinopathy.
Collapse
Affiliation(s)
- Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Xiaoke Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Zijuan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Guangyuan Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
2
|
Biryukov SY, Vinogradova NA, Kolesnikov YG, Levashova LA, Markovskaya OV, Moroz DI, Pastel VB, Chantsev AV, Shirokov VA, Shcherbakov GI. [On the use of type I tropocollagen for local injection therapy of spine, upper and lower extremity disorders]. TERAPEVT ARKH 2023; 95:1197-1204. [PMID: 38785061 DOI: 10.26442/00403660.2023.12.202533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024]
Abstract
A meeting of Interdisciplinary Expert Panel with leading specialists in the field of orthopedics/traumatology, surgery, rheumatology, and neurology was held in Moscow on February 10, 2023. The purpose of the meeting was to discuss the current status of local injection therapy (LIT) in Russia and the rationale behind the use of collagen-based products for various musculoskeletal disorders. The experts considered the following issues: (1) General contraindications to the use of medical products based on tropocollagen as well as an algorithm for actions in case of adverse events; (2) Guidelines regarding LIT in general and LIT using tropocollagen in particular, including in combination with other LIT products; (3) Particular indications and approaches to the treatment of patients with abnormal changes in appendicular joints and spine with damage to both intra-articular structures and periarticular soft tissue.
Collapse
Affiliation(s)
| | | | - Y G Kolesnikov
- Medical Companys LLC (Reshetov Institute of Surgical Correction and Rehabilitation)
| | - L A Levashova
- Far Eastern Federal University
- Artrologia LLC (Professor Dubikov's Rheumatology Clinic)
| | | | - D I Moroz
- EzraMed Clinic LLC (Ezramed Clinic Medical Center)
| | | | | | - V A Shirokov
- Ekaterinburg Scientific Center for Industrial Worker Health Promotion and Disease Prevention
- Erisman Federal Scientific Center for Hygiene and Sanitation
- Ural State Medical University
| | | |
Collapse
|
3
|
Henderson BS, Cudworth KF, Peña E, Lujan TJ. Modeling fatigue failure in soft tissue using a visco-hyperelastic model with discontinuous damage. J Mech Behav Biomed Mater 2023; 144:105968. [PMID: 37390777 PMCID: PMC11008526 DOI: 10.1016/j.jmbbm.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
Soft tissue is susceptible to injury from single high-magnitude static loads and from repetitive low-magnitude fatigue loads. While many constitutive formulations have been developed and validated to model static failure in soft tissue, a modeling framework is not well-established for fatigue failure. Here we determined the feasibility of using a visco-hyperelastic damage model with discontinuous damage (strain energy-based damage criterion) to simulate low- and high-cycle fatigue failure in soft fibrous tissue. Cyclic creep data from six uniaxial tensile fatigue experiments of human medial meniscus were used to calibrate the specimen-specific material parameters. The model was able to successfully simulate all three characteristic stages of cyclic creep, and predict the number of cycles until tissue rupture. Mathematically, damage propagated under constant cyclic stress due to time-dependent viscoelastic increases in tensile stretch that in turn increased strain energy. Our results implicate solid viscoelasticity as a fundamental regulator of fatigue failure in soft tissue, where tissue with slow stress relaxation times will be more resistant to fatigue injury. In a validation study, the visco-hyperelastic damage model was able to simulate characteristic stress-strain curves of pull to failure experiments (static failure) when using material parameters curve fit to the fatigue experiments. For the first time, we've shown that a visco-hyperelastic discontinuous damage framework can model cyclic creep and predict material rupture in soft tissue, and may enable the reliable simulation of both fatigue and static failure behavior from a single constitutive formulation.
Collapse
Affiliation(s)
- Bradley S Henderson
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Katelyn F Cudworth
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Estefanía Peña
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina, Zaragoza, Spain
| | - Trevor J Lujan
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA.
| |
Collapse
|
4
|
Dickerson CR, McDonald AC, Chopp-Hurley JN. Between Two Rocks and in a Hard Place: Reflecting on the Biomechanical Basis of Shoulder Occupational Musculoskeletal Disorders. HUMAN FACTORS 2023; 65:879-890. [PMID: 31961724 DOI: 10.1177/0018720819896191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The aim was to review the biomechanical origins of occupational shoulder damage, while considering the complexity of shoulder mechanics and musculoskeletal consequences of diverse task demands. BACKGROUND Accessible measures of physical exposures are the primary focus of occupational shoulder assessments and analyses. This approach has led to guidelines and intervention strategies that are often inadequate for mitigating shoulder disorders amongst the complexity of modern workplace demands. Integration of complex shoulder mechanics into occupational assessments, analyses, and interventions is critical for reducing occupational shoulder injury risk. METHOD This narrative review describes shoulder biomechanics in the context of common injury mechanisms and consequent injuries, with a particular focus on subacromial impingement syndrome. Several modulators of shoulder injury risk are reviewed, including fatigue, overhead work, office ergonomics considerations, and pushing and pulling task configurations. RESULTS Relationships between work requirements, muscular demands, fatigue, and biomechanical tissue loads exist. This review highlights that consideration of specific workplace factors should be integrated with our knowledge of the intricate arrangement and interpersonal variability of the shoulder complex to proactively evaluate occupational shoulder demands and exposures. CONCLUSION A standard method for evaluating shoulder muscle exposures during workplace tasks does not exist. An integrated approach is critical for improved work design and prevention of shoulder tissue damage and accompanying disability. APPLICATION This review is particularly relevant for researchers and practitioners, providing guidance for work design and evaluation for shoulder injury prevention by understanding the importance of the unique and complex mechanics of the shoulder.
Collapse
|
5
|
Gains CC, Giannapoulos A, Zamboulis DE, Lopez-Tremoleda J, Screen HRC. Development and application of a novel in vivo overload model of the Achilles tendon in rat. J Biomech 2023; 151:111546. [PMID: 36958089 DOI: 10.1016/j.jbiomech.2023.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Repetitive overload is a primary factor in tendon injury, causing progressive accumulation of matrix damage concurrent with a cellular response. However, it remains unclear how these events occur at the initial stages of the disease, making it difficult to identify appropriate treatment approaches. Here, we describe the development of a new model to cyclically load the Achilles tendon (AT) of rats in vivo and investigate the initial structural and cellular responses. The model utilizes controlled dorsiflexion of the ankle joint applied near maximal dorsiflexion, for 10,000 cycles at 3 Hz. Animals were subjected to a single bout of in vivo loading under anaesthesia, and either culled immediately (without recovery from anaesthesia), or 48 h or 4-weeks post-loading. Macro strains were assessed in cadavers, whilst tendon specific microdamage was assessed through collagen-hybridizing peptide (CHP) immunohistochemistry which highlighted a significant rise in CHP staining in loaded ATs compared to contralateral controls, indicating an accumulation of overload-induced damage. Staining for pro-inflammatory mediators (IL-6 and COX-2) and matrix degradation markers (MMP-3 and -13) also suggests an initial cellular response to overload. Model validation confirmed our approach was able to explore early overload-induced damage within the AT, with microdamage present and no evidence of broader musculoskeletal damage. The new model may be implemented to map the progression of tendinopathy in the AT, and thus study potential therapeutic interventions.
Collapse
Affiliation(s)
- Connor Charles Gains
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Antonios Giannapoulos
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Danae Emilie Zamboulis
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jordi Lopez-Tremoleda
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Hazel R C Screen
- School of Engineering and Materials Science (SEMS), Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
6
|
Godshall S, Pedaprolu K, Vasti E, Eskandari F, Szczesny SE. Measuring Local Tissue Strains in Tendons via Open-Source Digital Image Correlation. J Vis Exp 2023:10.3791/64921. [PMID: 36779598 PMCID: PMC11632607 DOI: 10.3791/64921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is considerable scientific interest in understanding the strains that tendon cells experience in situ and how these strains influence tissue remodeling. Based on this interest, several analytical techniques have been developed to measure local tissue strains within tendon explants during loading. However, in several cases, the accuracy and sensitivity of these techniques have not been reported, and none of the algorithms are publicly available. This has made it difficult for the more widespread measurement of local tissue strains in tendon explants. Therefore, the objective of this paper was to create a validated analysis tool for measuring local tissue strains in tendon explants that is readily available and easy to use. Specifically, a publicly available augmented-Lagrangian digital image correlation (ALDIC) algorithm was adapted for measuring 2D strains by tracking the displacements of cell nuclei within mouse Achilles tendons under uniaxial tension. Additionally, the accuracy of the calculated strains was validated by analyzing digitally transformed images, as well as by comparing the strains with values determined from an independent technique (i.e., photobleached lines). Finally, a technique was incorporated into the algorithm to reconstruct the reference image using the calculated displacement field, which can be used to assess the accuracy of the algorithm in the absence of known strain values or a secondary measurement technique. The algorithm is capable of measuring strains up to 0.1 with an accuracy of 0.00015. The technique for comparing a reconstructed reference image with the actual reference image successfully identified samples that had erroneous data and indicated that, in samples with good data, approximately 85% of the displacement field was accurate. Finally, the strains measured in mouse Achilles tendons were consistent with the prior literature. Therefore, this algorithm is a highly useful and adaptable tool for accurately measuring local tissue strains in tendons.
Collapse
Affiliation(s)
- Stanton Godshall
- Department of Biomedical Engineering, Pennsylvania State University
| | | | - Erica Vasti
- Department of Biomedical Engineering, Pennsylvania State University
| | - Faezeh Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology
| | - Spencer E Szczesny
- Department of Biomedical Engineering, Pennsylvania State University; Department of Orthopaedics and Rehabilitation, Pennsylvania State University;
| |
Collapse
|
7
|
Review of human supraspinatus tendon mechanics. Part I: fatigue damage accumulation and failure. J Shoulder Elbow Surg 2022; 31:2671-2677. [PMID: 35931330 DOI: 10.1016/j.jse.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
Repetitive stress injuries to the rotator cuff, and particularly the supraspinatus tendon (SST), are highly prevalent and debilitating. These injuries typically occur through the application of cyclic load below the threshold necessary to cause acute tears, leading to accumulation of incremental damage that exceeds the body's ability to heal, resulting in decreased mechanical strength and increased risk of frank rupture at lower loads. Consistent progression of fatigue damage across multiple model systems suggests a generalized tendon response to overuse. This finding may allow for interventions before gross injury of the SST occurs. Further research into the human SST response to fatigue loading is necessary to characterize the fatigue life of the tendon, which will help determine the frequency, duration, and magnitude of load spectra the SST may experience before injury. Future studies may allow in vivo SST strain analysis during specific activities, generation of a human SST stress-cycle curve, and characterization of damage and repair related to repetitive tasks.
Collapse
|
8
|
Fatigue Testing of Human Flexor Tendons Using a Customized 3D-Printed Clamping System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Improved surgical procedures and implant developments for ligament or tendon repair require an in-depth understanding of tissue load-deformation and fatigue properties. Cyclic testing will provide crucial information on the behavior of these materials under reoccurring loads and on fatigue strength. Sparse data are available describing soft tissue behavior under cyclic loading. To examine fatigue strength, a new technology was trialed deploying 3D-printing to facilitate and standardize cyclic tests aiming to determine tendon fatigue behavior. Cadaveric flexor digitorum tendons were harvested and mounted for tensile testing with no tapering being made, using 3D-printed clamps and holder arms, while ensuring a consistent testing length. Loads ranging between 200 to 510 N were applied at a frequency of 4 Hz, and cycles to failure ranged between 8 and >260,000. S–N curves (Woehler curves) were generated based on the peak stresses and cycles to failure. Power regression yielded a combined coefficient of determination of stress and cycles to failure of R2 = 0.65, while the individual coefficients for tissues of single donors ranged between R2 = 0.54 and R2 = 0.88. The here-presented results demonstrate that S–N curves of human tendons can be obtained using a standardized setting deploying 3D-printing technology.
Collapse
|
9
|
Marcoux JT, Tong L. Fibrocartilaginous Tissue: Why Does It Fail to Heal? Clin Podiatr Med Surg 2022; 39:437-450. [PMID: 35717061 DOI: 10.1016/j.cpm.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tendons and ligaments are critical components in the function of the musculoskeletal system, as they provide stability and guide motion for the biomechanical transmission of forces into bone. Several common injuries in the foot and ankle require the repair of ruptured or attenuated tendon or ligament to its osseous insertion. Understanding the structure and function of injured ligaments and tendons is complicated by the variability and unpredictable nature of their healing. The healing process at the tendon/ligament to bone interface is challenging and often frustrating to foot and ankle surgeons, as they have a high failure rate necessitating the need for revision.
Collapse
Affiliation(s)
- John T Marcoux
- Division of Podiatry, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Span 3, Boston, MA 02215, USA.
| | - Lowell Tong
- Division of Podiatry, Department of Surgery, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Span 3, Boston, MA 02215, USA
| |
Collapse
|
10
|
Rehydration of the Tendon Fascicle Bundles Using Simulated Body Fluid Ensures Stable Mechanical Properties of the Samples. MATERIALS 2022; 15:ma15093033. [PMID: 35591368 PMCID: PMC9104251 DOI: 10.3390/ma15093033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
In this work, we investigate the influence of dehydration and subsequent rehydration of tendon fascicle bundles on their structural and mechanical properties by using distilled water, 0.9% NaCl, 10% NaCl, SBF, and double concentrated SBF (SBFx2). The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis for samples with various interfascicular matrix content, dissected from the anterior and posterior areas of bovine tendon. Uniaxial tests with relaxation periods and analysis of sample geometry and weight showed that dehydration alters the modulus of elasticity dependent on the interfascicular matrix content and influences the viscoelastic properties of tendon fascicle bundles. Tensile and relaxation tests revealed that changes resulting from excessive sample drying can be reversed by rehydration in an SBF bath solution for elastic strain range above the toe region. Rehydration in SBF solution led to minor differences in mechanical properties when compared to control samples. Moreover, anterior samples with greater interfascicular matrix content, despite their lower stiffness, are less sensitive to sample drying. The obtained results allow us to limit the discrepancies in the measurement of mechanical properties of wet biological samples and can be useful to researchers investigating soft tissue mechanics and the stability of transplant materials.
Collapse
|
11
|
Gallagher S, Barbe MF. The impaired healing hypothesis: a mechanism by which psychosocial stress and personal characteristics increase MSD risk? ERGONOMICS 2022; 65:573-586. [PMID: 34463204 PMCID: PMC9847256 DOI: 10.1080/00140139.2021.1974103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/23/2021] [Indexed: 05/09/2023]
Abstract
While the effects of physical risk factors on MSD development have been a primary focus of musculoskeletal research, psychological stressors, and certain personal characteristics (e.g. ageing, sex, and obesity) are also associated with increased MSD risk. The psychological and personal characteristics listed above share a common characteristic: all are associated with disruption of the body's neuroendocrine and immune responses resulting in an impaired healing process. An impaired healing response may result in reduced fatigue life of musculoskeletal tissues due to a diminished ability to keep pace with accumulating damage (perhaps reparable under normal circumstances), and an increased vulnerability of damaged tissue to further trauma owing to the prolonged healing process. Research in engineered self-healing materials suggests that decreased healing kinetics in the presence of mechanical loading can substantially reduce the fatigue life of materials. A model of factors influencing damage accrual and healing will be presented. Practitioner summary: This article provides a potential reason why musculoskeletal disorder risk is affected by psychosocial stress, age, sex, and obesity. The reason is that these factors are all associated with a slower than normal healing response. This may lead to faster damage development in musculoskeletal tissues resulting in higher MSD risk.
Collapse
Affiliation(s)
- Sean Gallagher
- Industrial and Systems Engineering Department, Auburn University, Auburn, AL, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lyu K, Liu X, Jiang L, Chen Y, Lu J, Zhu B, Liu X, Li Y, Wang D, Li S. The Functions and Mechanisms of Low-Level Laser Therapy in Tendon Repair (Review). Front Physiol 2022; 13:808374. [PMID: 35242050 PMCID: PMC8886125 DOI: 10.3389/fphys.2022.808374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tendon injury is a common disease of the musculoskeletal system, accounting for roughly 30%–40% of sports system disorder injuries. In recent years, its incidence is increasing. Many studies have shown that low-level laser therapy (LLLT) has a significant effect on tendon repair by firstly activating cytochrome C oxidase and thus carrying out the photon absorption process, secondly acting in all the three phases of tendon repair, and finally improving tendon recovery. The repair mechanisms of LLLT are different in the three phases of tendon repair. In the inflammatory phase, LLLT mainly activates a large number of VEGF and promotes angiogenesis under hypoxia. During the proliferation phase, LLLT increases the amount of collagen type III by promoting the proliferation of fibroblasts. Throughout the remodeling phase, LLLT mainly activates M2 macrophages and downregulates inflammatory factors, thus reducing inflammatory responses. However, it should also be noted that in the final phase of tendon repair, the use of LLLT causes excessive upregulation of some growth factors, which will lead to tendon fibrosis. In summary, we need to further investigate the functions and mechanisms of LLLT in the treatment of tendon injury and to clarify the nature of LLLT for the treatment of diverse tendon injury diseases.
Collapse
Affiliation(s)
- Kexin Lyu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Henderson BS, Cudworth KF, Wale ME, Siegel DN, Lujan TJ. Tensile fatigue strength and endurance limit of human meniscus. J Mech Behav Biomed Mater 2022; 127:105057. [PMID: 35091175 PMCID: PMC9925119 DOI: 10.1016/j.jmbbm.2021.105057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
The knee menisci are prone to mechanical fatigue injury from the cyclic tensile stresses that are generated during daily joint loading. Here we characterize the tensile fatigue behavior of human medial meniscus and investigate the effect of aging on fatigue strength. Test specimens were excised from the medial meniscus of young (under 40 years) and older (over 65 years) fresh-frozen cadaver knees. Cyclic uniaxial tensile loads were applied parallel to the primary circumferential fibers at 70%, 50%, 40%, or 30% of the predicted ultimate tensile strength (UTS) until failure occurred or one million cycles was reached. Equations for fatigue strength (S-N curve) and the probability of fatigue failure (unreliability curves) were created from the measured number of cycles to failure. The mean number of cycles to failure at 70%, 50%, 40%, and 30% of UTS were estimated to be approximately 500, 40000, 340000, and 3 million cycles, respectively. The endurance limit, defined as the tensile stress that can be safely applied for the average lifetime of use (250 million cycles), was estimated to be 10% of UTS (∼1.0 MPa). When cyclic tensile stresses exceeded 30% of UTS (∼3.0 MPa), the probability of fatigue failure rapidly increased. While older menisci were generally weaker and more susceptible to fatigue failures at high-magnitude tensile stresses, both young and older age groups had similar fatigue resistance at low-magnitude tensile stresses. In addition, we found that fatigue failures occurred after the dynamic modulus decreased during cyclic loading by approximately 20%. This experimental study has quantified fundamental fatigue properties that are essential to properly predict and prevent injury in meniscus and other soft fibrous tissues.
Collapse
Affiliation(s)
- Bradley S. Henderson
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise ID, USA
| | - Katelyn F. Cudworth
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise ID, USA
| | - Madison E. Wale
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise ID, USA
| | - Danielle N. Siegel
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise ID, USA
| | - Trevor J. Lujan
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise ID, USA
| |
Collapse
|
14
|
Pedaprolu K, Szczesny S. A Novel, Open Source, Low-Cost Bioreactor for Load-Controlled Cyclic Loading of Tendon Explants. J Biomech Eng 2022; 144:1135618. [PMID: 35147179 DOI: 10.1115/1.4053795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
A major risk factor for tendinopathy is tendon overuse (i.e., fatigue loading). Fatigue loading of tendon damages the extracellular matrix and induces tissue degeneration. However, the specific mechanisms linking tendon fatigue damage with tissue degeneration are unclear. While explant models of tendon fatigue loading have been used to address this knowledge gap, they predominantly employ bioreactors that apply cyclic displacements/strains rather than loads/stresses, which are more physiologically relevant. This is because of the technical complexity and cost of building a load-controlled bioreactor, which requires multiple motors, load cells, and computationally intensive feedback loops. Here, we present a novel, low-cost, load-controlled bioreactor that applies cyclic loading to multiple tendon explants by offloading weights from a single motorized stage. Using an optional load cell, we validated that the bioreactor can effectively provide load-controlled fatigue testing of mouse and rat tendon explants while maintaining tissue viability. Furthermore, all the design files, bill of materials, and operating software are available "open source" (https://github.com/Szczesnytendon/Bioreactor) so that anyone can easily manufacture and use the bioreactor for their own research. Therefore, this novel load-controlled bioreactor will enable researchers to study the mechanisms driving fatigue-induced tendon degeneration in a more physiologically relevant and cost-effective manner.
Collapse
Affiliation(s)
- Krishna Pedaprolu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, Pennsylvania State University, CBE Building Suite 122, University Park, PA 16802
| | - Spencer Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, Pennsylvania State University, CBE Building Suite 122, University Park, PA 16802
| |
Collapse
|
15
|
Williamson PM, Freedman BR, Kwok N, Beeram I, Pennings J, Johnson J, Hamparian D, Cohen E, Galloway JL, Ramappa AJ, DeAngelis JP, Nazarian A. Tendinopathy and tendon material response to load: What we can learn from small animal studies. Acta Biomater 2021; 134:43-56. [PMID: 34325074 DOI: 10.1016/j.actbio.2021.07.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Tendinopathy is a debilitating disease that causes as much as 30% of all musculoskeletal consultations. Existing treatments for tendinopathy have variable efficacy, possibly due to incomplete characterization of the underlying pathophysiology. Mechanical load can have both beneficial and detrimental effects on tendon, as the overall tendon response depends on the degree, frequency, timing, and magnitude of the load. The clinical continuum model of tendinopathy offers insight into the late stages of tendinopathy, but it does not capture the subclinical tendinopathic changes that begin before pain or loss of function. Small animal models that use high tendon loading to mimic human tendinopathy may be able to fill this knowledge gap. The goal of this review is to summarize the insights from in-vivo animal studies of mechanically-induced tendinopathy and higher loading regimens into the mechanical, microstructural, and biological features that help characterize the continuum between normal tendon and tendinopathy. STATEMENT OF SIGNIFICANCE: This review summarizes the insights gained from in-vivo animal studies of mechanically-induced tendinopathy by evaluating the effect high loading regimens have on the mechanical, structural, and biological features of tendinopathy. A better understanding of the interplay between these realms could lead to improved patient management, especially in the presence of painful tendon.
Collapse
|
16
|
Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells 2021; 10:cells10102553. [PMID: 34685532 PMCID: PMC8533909 DOI: 10.3390/cells10102553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Tendon and ligament injury poses an increasingly large burden to society. This systematic review explores whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon/ligament repair in vivo. On 26 May 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, to identify all studies that utilised MSC-EVs for tendon/ligament healing. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, and in silico studies were excluded, and studies without a control group were excluded. Out of 383 studies identified, 11 met the inclusion criteria. Data on isolation, the characterisation of MSCs and EVs, and the in vivo findings in in vivo models were extracted. All included studies reported better tendon/ligament repair following MSC-EV treatment, but not all found improvements in every parameter measured. Biomechanics, an important index for tendon/ligament repair, was reported by only eight studies, from which evidence linking biomechanical alterations to functional improvement was weak. Nevertheless, the studies in this review showcased the safety and efficacy of MSC-EV therapy for tendon/ligament healing, by attenuating the initial inflammatory response and accelerating tendon matrix regeneration, providing a basis for potential clinical use in tendon/ligament repair.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Maria Tennyson
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|
17
|
Bakker R, Kalra M, Tomescu SS, Bahensky R, Chandrashekar N. The effects of pistol grip power tools on median nerve pressure and tendon strains. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:1904-1910. [PMID: 34212825 DOI: 10.1080/10803548.2021.1950992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives. Tendonitis and carpal tunnel syndrome are common cumulative trauma disorders that can occur with repetitive usage of pistol grip power tools. The role of reaction torque resulting in a forceful rotary displacement of the tool handle, as well as the role of applied grip force, is not clear in the development of these disorders. This study aimed to quantify the flexor tendon strains and median nerve pressure during a typical power tool operation securing a threaded fastener. Methods. Six fresh-frozen cadaver arms were made to grip a replica pistol grip power tool using static weights to apply muscle forces. A 5-Nm torque was applied to the replica power tool. The median nerve pressure and strains in the flexor digitorum profundus and superficialis tendons were measured using a catheter and strain gauges, at three wrist flexion angles. Results. The peak tendon strains were between 1.5 and 2% and were predominantly due to the grip force more than the transmitted torque. Median nerve pressure significantly increased with the wrist flexed versus extended. Conclusion. The results indicate that the contribution of the grip force to the tendon strain and median nerve pressure was greater than the contribution from the reaction torque.
Collapse
Affiliation(s)
- Ryan Bakker
- Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | - Mayank Kalra
- Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | | | - Robert Bahensky
- Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | | |
Collapse
|
18
|
Keir PJ, Farias Zuniga A, Mulla DM, Somasundram KG. Relationships and Mechanisms Between Occupational Risk Factors and Distal Upper Extremity Disorders. HUMAN FACTORS 2021; 63:5-31. [PMID: 31314601 DOI: 10.1177/0018720819860683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The relationships between workplace risk factors and upper extremity injuries from epidemiological and laboratory studies were examined. BACKGROUND Epidemiological studies are associated with several limitations, affecting the strength of association between risk factors and the development of injuries. METHOD In this narrative review, we identified epidemiological and laboratory studies (published primarily since 1997) investigating exposure to workplace risk factors (force, repetition, posture, vibration) and risk of hand/wrist tendon-related disorders, epicondylitis, and carpal tunnel syndrome (CTS). RESULTS Forceful exertions are strongly associated with hand/wrist tendon-related disorders, epicondylitis, and CTS. Dose-response relationships were found for epicondylitis (repetition) and CTS (posture). Interactions demonstrate multiplicative effects of risk factors for injury risk. Laboratory studies display clear associations between task demands and biomechanical measures linked to mechanisms for upper extremity injuries with animal models providing further evidence of a dose-response between risk factors and injury. CONCLUSION Forceful, repetitive work requiring non-neutral postures are associated with increasing risk of hand/wrist tendon-related disorders, epicondylitis, and CTS as evidenced by epidemiology studies and laboratory-based investigations of humans and animals. APPLICATION Understanding the relationship between exposure levels of workplace risk factors and upper extremity disorders can improve injury prevention and rehabilitation strategies.
Collapse
|
19
|
Zitnay JL, Jung GS, Lin AH, Qin Z, Li Y, Yu SM, Buehler MJ, Weiss JA. Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. SCIENCE ADVANCES 2020; 6:eaba2795. [PMID: 32923623 PMCID: PMC7455178 DOI: 10.1126/sciadv.aba2795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 05/04/2023]
Abstract
Overuse injuries to dense collagenous tissues are common, but their etiology is poorly understood. The predominant hypothesis that micro-damage accumulation exceeds the rate of biological repair is missing a mechanistic explanation. Here, we used collagen hybridizing peptides to measure collagen molecular damage during tendon cyclic fatigue loading and computational simulations to identify potential explanations for our findings. Our results revealed that triple-helical collagen denaturation accumulates with increasing cycles of fatigue loading, and damage is correlated with creep strain independent of the cyclic strain rate. Finite-element simulations demonstrated that biphasic fluid flow is a possible fascicle-level mechanism to explain the rate dependence of the number of cycles and time to failure. Molecular dynamics simulations demonstrated that triple-helical unfolding is rate dependent, revealing rate-dependent mechanisms at multiple length scales in the tissue. The accumulation of collagen molecular denaturation during cyclic loading provides a long-sought "micro-damage" mechanism for the development of overuse injuries.
Collapse
Affiliation(s)
- Jared L. Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen H. Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics and School of Computing, University of Utah, Salt Lake City, UT 84112, USA
- Corresponding author.
| |
Collapse
|
20
|
Mechanical behavior of ropes based on polypropylene (PP) and poly(ethylene terephthalate) (PET) multifilament yarns for Achilles tendon partial substitution. J Mech Behav Biomed Mater 2020; 106:103734. [DOI: 10.1016/j.jmbbm.2020.103734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/04/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
|
21
|
Mehdizadeh A, Vinel A, Hu Q, Schall MC, Gallagher S, Sesek RF. Job rotation and work-related musculoskeletal disorders: a fatigue-failure perspective. ERGONOMICS 2020; 63:461-476. [PMID: 31951779 DOI: 10.1080/00140139.2020.1717644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Job rotation is an organisational strategy that can be used, in part, to reduce occupational exposure to physical risk factors associated with work-related musculoskeletal disorders (MSDs). Recent studies, however, suggest that job rotation schedules may increase the overall risk of injury to workers included in the rotation scheme. We describe a novel optimisation framework evaluating the effectiveness of a job rotation scheme using the fatigue failure model of MSD development and a case study with real injury data. Results suggest that the effect of job rotation is highly-dependent on the composition of the job pool, and inclusion of jobs with higher risk results in a drastic decrease in the effectiveness of rotation for reducing overall worker risk. The study highlights that in cases when high-risk jobs are present, job redesign of those high risk tasks should be the primary focus of intervention efforts rather than job rotation. Practitioner summary: Job rotation is often used in industry as a method to 'balance' physical demands experienced by workers to reduce musculoskeletal disorder (MSD) risk. This article examines the efficacy of reducing MSDs through job rotation using numerical simulation of job rotation strategies and utilising the fatigue failure model of MSD development.
Collapse
Affiliation(s)
- Amir Mehdizadeh
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Alexander Vinel
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Qiong Hu
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Richard F Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
22
|
Bonilla KA, Pardes AM, Freedman BR, Soslowsky LJ. Supraspinatus Tendons Have Different Mechanical Properties Across Sex. J Biomech Eng 2020; 141:2701591. [PMID: 30167668 DOI: 10.1115/1.4041321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Sex differences in the mechanical properties of different musculoskeletal tissues and their impact on tendon function and disease are becoming increasingly recognized. Tendon mechanical properties are influenced by the presence or absence of sex hormones and these effects appear to be tendon- or ligament-specific. The objective of this study was to determine how sex and hormone differences in rats affect supraspinatus tendon and muscle properties. We hypothesized that male supraspinatus tendons would have increased cross-sectional area but no differences in tendon material properties or muscle composition when compared to supraspinatus tendons from female or ovariectomized (OVX) female rats. Uninjured supraspinatus tendons and muscles from male, female, and OVX female rats were collected and mechanical and histological properties were determined. Our analysis demonstrated decreased dynamic modulus and increased hysteresis and cross-sectional area in male tendons. We found that male tendons exhibited decreased dynamic modulus (during low strain frequency sweep and high strain fatigue loading), increased hysteresis, and increased cross-sectional area compared to female and OVX female tendons. Despite robust mechanical differences, tendon cell density and shape, and muscle composition remained unchanged between groups. Interestingly, these differences were unique compared to previously reported sex differences in rat Achilles tendons, which further supports the concept that the effect of sex on tendon varies anatomically. These differences may partially provide a mechanistic explanation for the increased rate of acute supraspinatus tendon ruptures seen in young males.
Collapse
Affiliation(s)
- K A Bonilla
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - A M Pardes
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - B R Freedman
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA 19104.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115
| | - L J Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
23
|
de Girolamo L, Morlin Ambra LF, Perucca Orfei C, McQuilling JP, Kimmerling KA, Mowry KC, Johnson KA, Phan AT, Whited JL, Gomoll AH. Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of Collagenase-Induced Tendinopathy. Cells 2019; 8:E1411. [PMID: 31717431 PMCID: PMC6912389 DOI: 10.3390/cells8111411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Treatment of tendon injuries is challenging, with neither conservative nor surgical approaches providing full recovery. Placental-derived tissues represent a promising tool for the treatment of tendon injuries. In this study, human amniotic suspension allograft (ASA) was investigated in a pre-clinical model of Achilles tendinopathy. Collagenase type I was injected in the right hind limb of Sprague Dawley rats to induce disease. Contralateral tendons were either left untreated or injected with saline as controls. Seven days following induction, tendons were injected with saline, ASA, or left untreated. Rats were sacrificed 14 and 28 days post-treatment. Histological and biomechanical analysis of tendons was completed. Fourteen days after ASA injection, improved fiber alignment and reduced cell density demonstrated improvement in degenerated tendons. Twenty-eight days post-treatment, tendons in all treatment groups showed fewer signs of degeneration, which is consistent with normal tendon healing. No statistically significant differences in histological or biomechanical analyses were observed between treatment groups at 28 days independent of the treatment they received. In this study, ASA treatment was safe, well-tolerated, and resulted in a widespread improvement of the tissue. The results of this study provide preliminary insights regarding the potential use of ASA for the treatment of Achilles tendinopathy.
Collapse
Affiliation(s)
- Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Luiz Felipe Morlin Ambra
- University Hospital São Paulo, Av. Prof. Lineu Prestes, 2565-Butantã, São Paulo, SP 05508-000, Brazil;
| | | | - John P. McQuilling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kelly A. Kimmerling
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Katie C. Mowry
- Organogenesis, 2641 Rocky Ridge Lane, Birmingham, AL 35216, USA; (J.P.M.); (K.A.K.); (K.C.M.)
| | - Kimberly A. Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Amy T. Phan
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Jessica L. Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
| | - Andreas H. Gomoll
- Harvard Medical School, the Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham and Women’s Hospital, 7 Divinity Avenue, Cambridge, MA 02138, USA; (K.A.J.); (A.T.P.); (J.L.W.)
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| |
Collapse
|
24
|
Keefer Hutchison M, Patterson C, Cuddeford T, Dudley R, Sorenson E, Brumitt J. Low prevalence of patellar tendon abnormality and low incidence of patellar tendinopathy in female collegiate volleyball players. Res Sports Med 2019; 28:155-167. [PMID: 31663370 DOI: 10.1080/15438627.2019.1683559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The prevalence of patellar tendinopathy has been reported to be as high as 50% in elite male volleyball (VB) players; however, the rate of injury in female collegiate VB athletes is unknown. The purpose of this study was to 1) identify the prevalence of ultrasonographic evidence of patellar tendon abnormality at the start of the preseason in female collegiate VB players; 2) report the incidence of tendinopathy during the season; and 3) determine if the preseason presence of tendon abnormality is associated with onset of disease. One hundred and six female collegiate VB players had both patellar tendons imaged. Incidence of patellar tendinopathy was tracked during the course of the 4-month season. Twenty-two athletes presented with ultrasonographic evidence of patellar tendon abnormality in at least one knee at the start of the preseason. The incidence of time-loss patellar tendinopathy was 0.26 (95% CI: 0.04, 0.85) per 1000 athletic exposures. This study was unable to determine if preseason presence of tendon abnormality was associated with a greater risk of tendinopathy due to power. The prevalence of tendon abnormality in the preseason and the incidence of patellar tendinopathy in female collegiate VB players are lower than that observed in other populations.
Collapse
Affiliation(s)
| | | | - Tyler Cuddeford
- School of Physical Therapy, George Fox University, Newberg, OR, USA
| | | | | | - Jason Brumitt
- School of Physical Therapy, George Fox University, Newberg, OR, USA
| |
Collapse
|
25
|
Mersmann F, Pentidis N, Tsai MS, Schroll A, Arampatzis A. Patellar Tendon Strain Associates to Tendon Structural Abnormalities in Adolescent Athletes. Front Physiol 2019; 10:963. [PMID: 31427983 PMCID: PMC6687848 DOI: 10.3389/fphys.2019.00963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
High mechanical strain is thought to be one of the main factors for the risk of tendon injury, as it determines the mechanical demand placed upon the tendon by the working muscle. The present study investigates the association of tendon mechanical properties including force, stress and strain, and measures of tendon micromorphology and neovascularization, which are thought to be indicative of tendinopathy in an adolescent high-risk group for overuse injury. In 16 adolescent elite basketball athletes (14–15 years of age) we determined the mechanical properties of the patellar tendon by combining inverse dynamics with magnetic resonance and ultrasound imaging. Tendon micromorphology was determined based on a spatial frequency analysis of sagittal plane ultrasound images and neovascularization was quantified as color Doppler area. There was a significant inverse relationship between tendon strain and peak spatial frequency (PSF) in the proximal tendon region (r = −0.652, p = 0.006), indicating locally disorganized collagen fascicles in tendons that are subjected to high strain. No such associations were present at the distal tendon site and no significant correlations were observed between tendon force or stress and tendon PSF as well as between tendon loading and vascularity. Our results suggest that high levels of tendon strain might associate to a micromorphological deterioration of the collagenous network in the proximal patellar tendon, which is also the most frequent site affected by tendinopathy. Neovascularization of the tendon on the other hand seems not to be directly related to the magnitude of tendon loading and might be a physiological response to a high frequency of training in this group. Those findings have important implications for our understanding of the etiology of tendinopathy and for the development of diagnostical tools for the assessment of injury risk.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaos Pentidis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng-Shiuan Tsai
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Tendon tissue microdamage and the limits of intrinsic repair. Matrix Biol 2019; 85-86:68-79. [PMID: 31325483 DOI: 10.1016/j.matbio.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
The transmission of mechanical muscle force to bone for musculoskeletal stability and movement is one of the most important functions of tendon. The load-bearing tendon core is composed of highly aligned collagen-rich fascicles interspersed with stromal cells (tenocytes). Despite being built to bear very high mechanical stresses, supra-physiological/repetitive mechanical overloading leads to tendon microdamage in fascicles, and potentially to tendon disease and rupture. To date, it is unclear to what extent intrinsic healing mechanisms of the tendon core compartment can repair microdamage. In the present study, we investigated the healing capacity of the tendon core compartment in an ex vivo tissue explant model. To do so, we isolated rat tail tendon fascicles, damaged them by applying a single stretch to various degrees of sub-rupture damage and longitudinally assessed downstream functional and structural changes over a period of several days. Functional damage was assessed by changes in the elastic modulus of the material stress-strain curves, and biological viability of the resident tenocytes. Structural damage was quantified using a fluorescent collagen hybridizing peptide (CHP) to label mechanically disrupted collagen structures. While we observed functional mechanical damage for strains above 2% of the initial fascicle length, structural collagen damage was only detectable for 6% strain and beyond. Minimally loaded/damaged fascicles (2-4% strain) progressively lost elastic modulus over the course of tissue culture, despite their collagen structures remaining intact with high degree of maintained cell viability. In contrast, more severely overloaded fascicles (6-8% strain) with damage at the molecular/collagen level showed no further loss of the elastic modulus but markedly decreased cell viability. Surprisingly, in these heavily damaged fascicles the elastic modulus partially recovered, an effect also seen in further experiments on devitalized fascicles, implying the possibility of a non-cellular but matrix-driven mechanism of molecular repair. Overall, our findings indicate that the tendon core has very little capacity for self-repair of microdamage. We conclude that stromal tenocytes likely do not play a major role in anabolic repair of tendon matrix microdamage, but rather mediate catabolic matrix breakdown and communication with extrinsic cells that are able to effect tissue repair.
Collapse
|
27
|
Biomechanical and geometric characterization of peroneus longus allografts with respect to age. Clin Biomech (Bristol, Avon) 2019; 67:90-95. [PMID: 31082636 DOI: 10.1016/j.clinbiomech.2019.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/02/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior cruciate ligament injuries are among the most common injuries in high impact sports, and reconstruction is the standard surgical procedure for these ruptures. Reconstructions are often performed using allografts rather than autografts on a case-by-case basis. Controversy exists as to whether or not age of donor tissue plays a factor in the mechanical properties of allografts. METHODS 38 peroneus longus (PL) tendons were prepared using the two-strand graft technique and then subjected to a cyclic loading test regimen of 1000 cycles to determine material properties. Specimens were grouped based on age to ascertain whether donor age affects the material properties of PL tendons. FINDINGS Secant modulus of the first cycle was determined to be 150.43 (SD 40.24) MPa. The average magnitude of the dynamic modulus was determined to be 82.81 (SD 24.65) MPa. Specimens were grouped into three distinct groups for analysis (x < 40 yo, 40 yo ≤ x < 60 yo, 60 yo < x). INTERPRETATION The need for using intrinsic material properties is highlighted. There is no significant difference in any intrinsic material property with respect to age or the fatigue of the tendon as the cycle count increases. Conversely, the measured stiffness of a tendon decreased as function of age with a large effect size. Based on analysis of graft geometries, it was determined that PL tendons become significantly more slender with increased age which result in the observed decrease in stiffness.
Collapse
|
28
|
Stenroth L, Thelen D, Franz J. Biplanar ultrasound investigation of in vivo Achilles tendon displacement non-uniformity. TRANSLATIONAL SPORTS MEDICINE 2019; 2:73-81. [PMID: 31008448 PMCID: PMC6472705 DOI: 10.1002/tsm2.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Achilles tendon is a common tendon for the medial and lateral gastrocnemius and soleus muscles. Non-uniform Achilles tendon regional displacements have been observed in vivo which may result from non-uniform muscle loading and intra-tendinous shearing. However, prior observations are limited to the sagittal plane. This study investigated Achilles tendon tissue displacement patterns during isometric plantarflexor contractions in the coronal and sagittal planes. Fourteen subjects (5 female, 9 male, 26±3 yr) performed maximal isometric plantarflexor contractions with the knee in full extension and flexed to 110°. An ultrasound transducer positioned over the free Achilles tendon collected beam formed radio frequency (RF) data at 70 frames/s. Localized tissue displacements were analyzed using a speckle tracking algorithm. We observed non-uniform Achilles tendon tissue displacements in both imaging planes. Knee joint posture had no significant effect on tissue displacement patterns in either imaging plane. The non-uniform Achilles tendon tissue displacements during loading may arise from the anatomical organization of the sub-tendons associated with the three heads of the triceps surae. The biplanar investigation suggests that greatest displacements are localized to tissue likely to belong to soleus sub-tendon. This study adds novel information with possible implications for muscle coordination, function and muscle-tendon injury mechanisms.
Collapse
Affiliation(s)
- Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Finland
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Finland
| | - Darryl Thelen
- Department of Mechanical Engineering, University of Wisconsin – Madison, USA
- Department of Biomedical Engineering, University of Wisconsin – Madison, USA
| | - Jason Franz
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
29
|
Titan A, Andarawis-Puri N. Tendinopathy: Investigating the Intersection of Clinical and Animal Research to Identify Progress and Hurdles in the Field. JBJS Rev 2018; 4:01874474-201610000-00002. [PMID: 27792676 DOI: 10.2106/jbjs.rvw.15.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological treatments, surgical interventions, and rehabilitation exercises have been successfully used to treat tendinopathy, but the development of effective treatments has been hindered by the lack of mechanistic data regarding the pathogenesis of the disease. While insightful, clinical studies are limited in their capacity to provide data regarding the pathogenesis of tendinopathies, emphasizing the value of animal models and cell culture studies to fill this essential gap in knowledge. Clinical pathological findings from imaging studies or histological analysis are not universal across patients with tendinopathy and have not been clearly associated with the onset of symptoms. There are several unresolved controversies, including the cellular changes that accompany the tendinopathic disease state and the role of inflammation. Additional research is needed to correlate the manifestations of the disease with its pathogenesis, with the goal of reaching a field-wide consensus on the pathology of the disease state. Such a consensus will allow standardized clinical practices to more effectively diagnose and treat tendinopathy.
Collapse
Affiliation(s)
- Ashley Titan
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
30
|
Kiernan D, Hawkins DA, Manoukian MAC, McKallip M, Oelsner L, Caskey CF, Coolbaugh CL. Accelerometer-based prediction of running injury in National Collegiate Athletic Association track athletes. J Biomech 2018; 73:201-209. [PMID: 29699823 PMCID: PMC6561647 DOI: 10.1016/j.jbiomech.2018.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023]
Abstract
Running-related injuries (RRI) may result from accumulated microtrauma caused by combinations of high load magnitudes (vertical ground reaction forces; vGRFs) and numbers (strides). Yet relationships between vGRF and RRI remain unclear - potentially because previous research has largely been constrained to collecting vGRFs in laboratory settings and ignoring relationships between RRI and stride number. In this preliminary proof-of-concept study, we addressed these constraints: Over a 60-day period, each time collegiate athletes (n = 9) ran they wore a hip-mounted activity monitor that collected accelerations throughout the entire run. Accelerations were used to estimate peak vGRF, number of strides, and weighted cumulative loading (sum of peak vGRFs weighted to the 9th power) across the entirety of each run. Runners also reported their post-training pain/fatigue and any RRI that prevented training. Across 419 runs and >2.1 million strides, injured (n = 3) and uninjured (n = 6) participants did not report significantly different pain/fatigue (p = 0.56) or mean number of strides per run (p = 0.91). Injured participants did, however, have significantly greater peak vGRFs (p = 0.01) and weighted cumulative loading per run (p < 0.01). Results from this small but extensively studied sample of elite runners demonstrate that loading profiles (load magnitude-number combinations) quantified with activity monitors can provide valuable information that may prove essential for: (1) testing hypotheses regarding overuse injury mechanisms, (2) developing injury-prediction models, and (3) designing and adjusting athlete- and loading-specific training programs and feedback.
Collapse
Affiliation(s)
- Dovin Kiernan
- Biomedical Engineering Graduate Group, University of California Davis, United States
| | - David A Hawkins
- Biomedical Engineering Graduate Group, University of California Davis, United States; Department of Neurobiology, Physiology, & Behavior, University of California Davis, United States.
| | - Martin A C Manoukian
- Department of Neurobiology, Physiology, & Behavior, University of California Davis, United States
| | - Madeline McKallip
- Department of Neurobiology, Physiology, & Behavior, University of California Davis, United States
| | - Laura Oelsner
- Department of Biomedical Engineering, University of California Davis, United States
| | - Charles F Caskey
- Biomedical Engineering Graduate Group, University of California Davis, United States
| | - Crystal L Coolbaugh
- Biomedical Engineering Graduate Group, University of California Davis, United States
| |
Collapse
|
31
|
Linka K, Hillgärtner M, Itskov M. Fatigue of soft fibrous tissues: Multi-scale mechanics and constitutive modeling. Acta Biomater 2018; 71:398-410. [PMID: 29550441 DOI: 10.1016/j.actbio.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
In recent experimental studies a possible damage mechanism of collagenous tissues mainly caused by fatigue was disclosed. In this contribution, a multi-scale constitutive model ranging from the tropocollagen (TC) molecule level up to bundles of collagen fibers is proposed and utilized to predict the elastic and inelastic long-term tissue response. Material failure of collagen fibrils is elucidated by a permanent opening of the triple helical collagen molecule conformation, triggered either by overstretching or reaction kinetics of non-covalent bonds. This kinetics is described within a probabilistic framework of adhesive detachments of molecular linkages providing collagen fiber integrity. Both intramolecular and interfibrillar linkages are considered. The final constitutive equations are validated against recent experimental data available in literature for both uniaxial tension to failure and the evolution of fatigue in subsequent loading cycles. All material parameters of the proposed model have a clear physical interpretation. STATEMENT OF SIGNIFICANCE Irreversible changes take place at different length scales of soft fibrous tissues under supra-physiological loading and alter their macroscopic mechanical properties. Understanding the evolution of those histologic pathologies under loading and incorporating them into a continuum mechanical framework appears to be crucial in order to predict long-term evolution of various diseases and to support the development of tissue engineering.
Collapse
|
32
|
Mersmann F, Seynnes OR, Legerlotz K, Arampatzis A. Effects of tracking landmarks and tibial point of resistive force application on the assessment of patellar tendon mechanical properties in vivo. J Biomech 2018; 71:176-182. [PMID: 29463386 DOI: 10.1016/j.jbiomech.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022]
Abstract
The different methods used to assess patellar tendon elongation in vivo may partly explain the large variation of mechanical properties reported in the literature. The present study investigated the effects of tracking landmark position and tibial point of resistive force application during leg extensions in a dynamometer. Nineteen adults performed isometric contractions with a proximal and distal dynamometer shank pad position. Knee joint moments were calculated employing an inverse dynamics approach. Tendon elongation was measured using the patellar apex and either the tibial tuberosity (T) or plateau (P) as tracking landmark. Using P for tracking introduced a bias towards greater values of tendon elongation at all force levels from 100 N to maximum tendon force (TFmax; p < 0.05). The differences between landmarks considering maximum tendon strain were greater at the proximal shank pad position (p < 0.05). Tendon stiffness was lower for P compared with T, but only in intervals up to 50% of TFmax (p < 0.05). The agreement between T and P for stiffness calculated between 50% and TFmax was acceptable with the distal, but poor with the proximal pad position. We demonstrated that using the tibia plateau and not the insertion as tracking landmark clearly affects the assessment of the force-elongation curve of the patellar tendon. However, using a distal point of resistive force application and calculating tendon stiffness between 50% and TFmax seems to yield an acceptable agreement between landmarks. These findings have important implications for the assessment of tendon properties in vivo and cross-study comparisons.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Movement Science, Berlin, Germany.
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Kirsten Legerlotz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Movement Science, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Movement Science, Berlin, Germany
| |
Collapse
|
33
|
Szczesny SE, Aeppli C, David A, Mauck RL. Fatigue loading of tendon results in collagen kinking and denaturation but does not change local tissue mechanics. J Biomech 2018. [PMID: 29519673 DOI: 10.1016/j.jbiomech.2018.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatigue loading is a primary cause of tendon degeneration, which is characterized by the disruption of collagen fibers and the appearance of abnormal (e.g., cartilaginous, fatty, calcified) tissue deposits. The formation of such abnormal deposits, which further weakens the tissue, suggests that resident tendon cells acquire an aberrant phenotype in response to fatigue damage and the resulting altered mechanical microenvironment. While fatigue loading produces clear changes in collagen organization and molecular denaturation, no data exist regarding the effect of fatigue on the local tissue mechanical properties. Therefore, the objective of this study was to identify changes in the local tissue stiffness of tendons after fatigue loading. We hypothesized that fatigue damage would reduce local tissue stiffness, particularly in areas with significant structural damage (e.g., collagen denaturation). We tested this hypothesis by identifying regions of local fatigue damage (i.e., collagen fiber kinking and molecular denaturation) via histologic imaging and by measuring the local tissue modulus within these regions via atomic force microscopy (AFM). Counter to our initial hypothesis, we found no change in the local tissue modulus as a consequence of fatigue loading, despite widespread fiber kinking and collagen denaturation. These data suggest that immediate changes in topography and tissue structure - but not local tissue mechanics - initiate the early changes in tendon cell phenotype as a consequence of fatigue loading that ultimately culminate in tendon degeneration.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, United States.
| | - Céline Aeppli
- Eidgenössische Technische Hochschule, Rämistrasse 101, 8092 Zürich, Switzerland
| | - Alexander David
- Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 110 Stemmler Hall, 36th Street & Hamilton Walk, Philadelphia, PA 19104, United States; Department of Bioengineering, 240 Skirkanich Hall, 210 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, United States
| |
Collapse
|
34
|
Mersmann F, Bohm S, Arampatzis A. Imbalances in the Development of Muscle and Tendon as Risk Factor for Tendinopathies in Youth Athletes: A Review of Current Evidence and Concepts of Prevention. Front Physiol 2017; 8:987. [PMID: 29249987 PMCID: PMC5717808 DOI: 10.3389/fphys.2017.00987] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023] Open
Abstract
Tendons feature the crucial role to transmit the forces exerted by the muscles to the skeleton. Thus, an increase of the force generating capacity of a muscle needs to go in line with a corresponding modulation of the mechanical properties of the associated tendon to avoid potential harm to the integrity of the tendinous tissue. However, as summarized in the present narrative review, muscle and tendon differ with regard to both the time course of adaptation to mechanical loading as well as the responsiveness to certain types of mechanical stimulation. Plyometric loading, for example, seems to be a more potent stimulus for muscle compared to tendon adaptation. In growing athletes, the increased levels of circulating sex hormones might additionally augment an imbalanced development of muscle strength and tendon mechanical properties, which could potentially relate to the increasing incidence of tendon overload injuries that has been indicated for adolescence. In fact, increased tendon stress and strain due to a non-uniform musculotendinous development has been observed recently in adolescent volleyball athletes, a high-risk group for tendinopathy. These findings highlight the importance to deepen the current understanding of the interaction of loading and maturation and demonstrate the need for the development of preventive strategies. Therefore, this review concludes with an evidence-based concept for a specific loading program for increasing tendon stiffness, which could be implemented in the training regimen of young athletes at risk for tendinopathy. This program incorporates five sets of four contractions with an intensity of 85–90% of the isometric voluntary maximum and a movement/contraction duration that provides 3 s of high magnitude tendon strain.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Berlin, Germany
| |
Collapse
|
35
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
36
|
Takatani KC, Bruchal LC. A new approach to prevent overuse injuries of the rotator cuff supraspinatus tendon using the cumulative fatigue concept. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2017. [DOI: 10.1080/1463922x.2017.1284281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Liisa C. Bruchal
- Boeing Research & Technology, The Boeing Company, Seattle, WA, USA
| |
Collapse
|
37
|
Mersmann F, Charcharis G, Bohm S, Arampatzis A. Muscle and Tendon Adaptation in Adolescence: Elite Volleyball Athletes Compared to Untrained Boys and Girls. Front Physiol 2017; 8:417. [PMID: 28670285 PMCID: PMC5472702 DOI: 10.3389/fphys.2017.00417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
Though the plasticity of human tendons is well explored in adults, it is still unknown how superimposed mechanical loading by means of athletic training affects the properties of tendons during maturation. Due to the increased responsiveness of muscle to mechanical loading, adolescence is an important phase to investigate the effects of training on the mechanical properties of tendons. Hence, in the present study we compared vastus lateralis (VL) architecture, muscle strength of the knee extensor muscles and patellar tendon mechanical properties of male and female adolescent elite athletes to untrained boys and girls. Twenty-one adolescent volleyball athletes (A; 16.7 ± 1 years; 12 boys, 9 girls) and 24 similar-aged controls (C; 16.7 ± 1 years; 12 boys and girls, respectively) performed maximum isometric contractions on a dynamometer for the assessment of muscle strength and, by integrating ultrasound imaging, patellar tendon mechanical properties. Respective joint moments were calculated using an inverse dynamics approach and an electromyography-based estimation of antagonistic contribution. Additionally, the VL pennation angle, fascicle length and muscle-thickness were determined in the inactive state by means of ultrasound. Adolescent athletes produced significantly greater knee extension moments (normalized to body mass) compared to controls (A: 4.23 ± 0.80 Nm/kg, C: 3.57 ± 0.67 Nm/kg; p = 0.004), and showed greater VL thickness and pennation angle (+38% and +27%; p < 0.001). Tendon stiffness (normalized to rest length) was also significantly higher in athletes (A: 86.0 ± 27.1 kN/strain, C: 70.2 ± 18.8 kN/strain; p = 0.04), yet less pronounced compared to tendon force (A: 5785 ± 1146 N, C: 4335 ± 1015 N; p < 0.001), which resulted in higher levels of tendon strain during maximum contractions in athletes (A: 8.0 ± 1.9%, C: 6.4 ± 1.8%; p = 0.008). We conclude that athletic volleyball training provides a more efficient stimulus for muscle compared to tendon adaptation, which results in an increased demand placed upon the tendon by the working muscle in adolescent volleyball athletes. Besides implications for sport performance, these findings might have important consequences for the risk of tendon overuse injury.
Collapse
Affiliation(s)
- Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Georgios Charcharis
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu BerlinBerlin, Germany.,Berlin School of Movement ScienceBerlin, Germany
| |
Collapse
|
38
|
Martin C, Sun W. Fatigue damage of collagenous tissues: experiment, modeling and simulation studies. J Long Term Eff Med Implants 2016; 25:55-73. [PMID: 25955007 DOI: 10.1615/jlongtermeffmedimplants.2015011749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed.
Collapse
Affiliation(s)
- Caitlin Martin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30313
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30313
| |
Collapse
|
39
|
Perucca Orfei C, Lovati AB, Viganò M, Stanco D, Bottagisio M, Di Giancamillo A, Setti S, de Girolamo L. Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats. PLoS One 2016; 11:e0161590. [PMID: 27548063 PMCID: PMC4993508 DOI: 10.1371/journal.pone.0161590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Tendinopathy is a big burden in clinics and it represents 45% of musculoskeletal lesions. Despite the relevant social impact, both pathogenesis and development of the tendinopathy are still under-investigated, thus limiting the therapeutic advancement in this field. The purpose of this study was to evaluate the dose-dependent and time-related tissue-level changes occurring in a collagenase-induced tendinopathy in rat Achilles tendons, in order to establish a standardized model for future pre-clinical studies. With this purpose, 40 Sprague Dawley rats were randomly divided into two groups, treated by injecting collagenase type I within the Achilles tendon at 1 mg/mL (low dose) or 3 mg/mL (high dose). Tendon explants were histologically evaluated at 3, 7, 15, 30 and 45 days. Our results revealed that both the collagenase doses induced a disorganization of collagen fibers and increased the number of rounded resident cells. In particular, the high dose treatment determined a greater neovascularization and fatty degeneration with respect to the lower dose. These changes were found to be time-dependent and to resemble the features of human tendinopathy. Indeed, in our series, the acute phase occurred from day 3 to day 15, and then progressed towards the proliferative phase from day 30 to day 45 displaying a degenerative appearance associated with a very precocious and mild remodeling process. The model represents a good balance between similarity with histological features of human tendinopathy and feasibility, in terms of tendon size to create lesions and costs when compared to other animal models. Moreover, this model could contribute to improve the knowledge in this field, and it could be useful to properly design further pre-clinical studies to test innovative treatments for tendinopathy.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marco Viganò
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Deborah Stanco
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | | | | | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
40
|
Patellar Tendinopathy: Clinical Diagnosis, Load Management, and Advice for Challenging Case Presentations. J Orthop Sports Phys Ther 2015; 45:887-98. [PMID: 26390269 DOI: 10.2519/jospt.2015.5987] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis The hallmark features of patellar tendinopathy are (1) pain localized to the inferior pole of the patella and (2) load-related pain that increases with the demand on the knee extensors, notably in activities that store and release energy in the patellar tendon. While imaging may assist in differential diagnosis, the diagnosis of patellar tendinopathy remains clinical, as asymptomatic tendon pathology may exist in people who have pain from other anterior knee sources. A thorough examination is required to diagnose patellar tendinopathy and contributing factors. Management of patellar tendinopathy should focus on progressively developing load tolerance of the tendon, the musculoskeletal unit, and the kinetic chain, as well as addressing key biomechanical and other risk factors. Rehabilitation can be slow and sometimes frustrating. This review aims to assist clinicians with key concepts related to examination, diagnosis, and management of patellar tendinopathy. Difficult clinical presentations (eg, highly irritable tendon, systemic comorbidities) as well as common pitfalls, such as unrealistic rehabilitation time frames and overreliance on passive treatments, are also discussed. J Orthop Sports Phys Ther 2015;45(11):887-898. Epub 21 Sep 2015. doi:10.2519/jospt.2015.5987.
Collapse
|
41
|
Abstract
Synopsis Tendinopathy is a very common disorder in both recreational and elite athletes. Many individuals have recurrent symptoms that lead to chronic conditions and termination of sports activity. Exercise has become a popular and somewhat efficacious treatment regime, and isolated eccentric exercise has been particularly promoted. In this clinical commentary, we review the relevant evidence for different exercise regimes in tendinopathy rehabilitation, with particular focus on the applied loads that are experienced by the tendon and how the exercise regime may affect these applied loads. There is no convincing clinical evidence to demonstrate that isolated eccentric loading exercise improves clinical outcomes more than other loading therapies. However, the great variation and sometimes insufficient reporting of the details of treatment protocols may hamper the interpretation of what may be the optimal exercise regime with respect to parameters such as load magnitude, speed of movement, and recovery period between exercise sessions. Future studies should control for these loading parameters, evaluate various exercise dosages, and think beyond isolated eccentric exercises to arrive at firm recommendations regarding rehabilitation of individuals with tendinopathies. J Orthop Sports Phys Ther 2015;45(11):853-863. Epub 14 Oct 2015. doi:10.2519/jospt.2015.5910.
Collapse
|
42
|
LIU YAN, LUO YUANCAI, WANG DELING, GAO YANFEI. ALIGNMENT OF CELLULAR FOCAL CONTACTS AND THEIR SHAPES BY SUBSTRATE ANISOTROPY. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell adhesion to the extracellular matrix is accomplished by the clustering of receptor–ligand bonds into focal contacts on the cell-substrate interface. The contractile forces applied onto these focal contacts lead to elastic deformation of the surrounding, which results into a cellular mechanosensory capability that plays a key role in cell adhesion, spreading, and migration, among many others. The mechanosensitivity can be manipulated by the substrate anisotropy, by which focal contacts may align into certain directions so to minimize the total mechanical potential energy. Using the elastic anisotropic contact analysis, this work systematically analyzes the dependence of the alignment on the elastic anisotropy, and more importantly, the direction of the inclined contractile forces. The contact displacement fields are a complex function of the elastic constants, so simple analysis based on tensile or shear softest direction cannot properly predict the alignment orientation. It is also proved that if these focal contacts are of elongated shape, the major axis will be parallel to the alignment direction.
Collapse
Affiliation(s)
- YAN LIU
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin 300192, P. R. China
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37922, USA
| | - YUANCAI LUO
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin 300192, P. R. China
| | - DELING WANG
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin 300192, P. R. China
| | - YANFEI GAO
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37922, USA
| |
Collapse
|
43
|
Freedman BR, Zuskov A, Sarver JJ, Buckley MR, Soslowsky LJ. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage. J Orthop Res 2015; 33:904-10. [PMID: 25773654 PMCID: PMC4416993 DOI: 10.1002/jor.22875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanical properties, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure.
Collapse
Affiliation(s)
- Benjamin R. Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joseph J. Sarver
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Mark R. Buckley
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Jafari L, Vachon P, Beaudry F, Langelier E. Histopathological, biomechanical, and behavioral pain findings of Achilles tendinopathy using an animal model of overuse injury. Physiol Rep 2015; 3:3/1/e12265. [PMID: 25602018 PMCID: PMC4387767 DOI: 10.14814/phy2.12265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Animal models of forced running are used to study overuse tendinopathy, a common health problem for which clear evidence for effective and accessible treatments is still lacking. In these models, pain evaluation is necessary to better understand the disease, help design and evaluate therapies, and ensure humane treatment of the animals. Therefore, the main objective of this study was to evaluate pain and pathologic findings in an animal model of moderate Achilles tendinopathy induced by treadmill running. Air puffs, instead of electrical shocks, were used to stimulate running so that pain associated with stimulation would be avoided. Pressure pain sensitivity was evaluated in vivo using a new instrumented plier, whereas spinal cord peptides were analyzed ex vivo with high‐performance liquid chromatography tandem mass spectrometry. Tendon histologic slides were semiquantitatively evaluated, using the Bonar score technique and biomechanical properties, using the traction test. After 8 weeks of treadmill running (2 weeks for adaptation and 6 weeks for the lesion protocol), the protocol was stopped because the air puffs became ineffective to stimulate running. We, nevertheless, observed some histologic changes characteristic of overuse tendinopathy as well as decreased mechanical properties, increased Substance P and dynorphin A peptides but without pressure pain sensitivity. These results suggest that air‐puffs stimulation is sufficient to induce an early stage tendinopathy to study new therapeutic drugs without inducing unnecessary pain. They also indicate that pain‐associated peptides could be related with movement evoked pain and with the sharp breakdown of the running performance. The main objective of this study was to correlate pain and pathologic findings in an animal model of moderate Achilles tendinopathy induced by treadmill running. We observed some histologic changes characteristic of overuse tendinopathy as well as decreased mechanical properties, increased Substance P and dynorphin A peptides but without pressure pain sensitivity.
Collapse
Affiliation(s)
- Leila Jafari
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Vachon
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Eve Langelier
- Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
45
|
Shepherd JH, Riley GP, Screen HRC. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level. J Mech Behav Biomed Mater 2014; 38:163-72. [PMID: 25001495 PMCID: PMC4148183 DOI: 10.1016/j.jmbbm.2014.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 12/04/2022]
Abstract
Many tendon injuries are believed to result from repetitive motion or overuse, leading to the accumulation of micro-damage over time. In vitro fatigue loading can be used to characterise damage during repeated use and investigate how this may relate to the aetiology of tendinopathy. This study considered the effect of fatigue loading on fascicles from two functionally distinct bovine tendons: the digital extensor and deep digital flexor. Micro-scale extension mechanisms were investigated in fascicles before or after a period of cyclic creep loading, comparing two different measurement techniques – the displacement of a photo-bleached grid and the use of nuclei as fiducial markers. Whilst visual damage was clearly identified after only 300 cycles of creep loading, these visual changes did not affect either gross fascicle mechanics or fascicle microstructural extension mechanisms over the 900 fatigue cycles investigated. However, significantly greater fibre sliding was measured when observing grid deformation rather than the analysis of nuclei movement. Measurement of microstructural extension with both techniques was localised and this may explain the absence of change in microstructural deformation in response to fatigue loading. Alternatively, the data may demonstrate that fascicles can withstand a degree of matrix disruption with no impact on mechanics. Whilst use of a photo-bleached grid to directly measure the collagen is the best indicator of matrix deformation, nuclei tracking may provide a better measure of the strain perceived directly by the cells. Tendon fascicle gross mechanics and micro-scale deformation investigated after fatigue loading. Fascicles can withstand a degree of matrix disruption without impact on mechanics. More fibre sliding was observed measuring grid deformation than tracking nuclei. Nuclei tracking may better represent the strains experienced by cells than grid deformation.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, E1 4NS, UK
| | - Graham P Riley
- School of Biological Sciences, University of East Anglia, UK
| | - Hazel R C Screen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, E1 4NS, UK.
| |
Collapse
|
46
|
Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HR. Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons. Acta Biomater 2014; 10:3217-24. [PMID: 24747261 DOI: 10.1016/j.actbio.2014.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/07/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
Abstract
Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury.
Collapse
|
47
|
Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HRC. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 2014; 11:20131058. [PMID: 24402919 DOI: 10.1098/rsif.2013.1058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy.
Collapse
Affiliation(s)
- Chavaunne T Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, , Mile End Road, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
48
|
Shepherd JH, Legerlotz K, Demirci T, Klemt C, Riley GP, Screen HRC. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour. Proc Inst Mech Eng H 2013; 228:49-59. [PMID: 24285289 PMCID: PMC4361498 DOI: 10.1177/0954411913509977] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most overuse tendinopathies are thought to be associated with repeated microstrain below the failure threshold, analogous to the fatigue failure that affects materials placed under repetitive loading. Investigating the progression of fatigue damage within tendons is therefore of critical importance. There are obvious challenges associated with the sourcing of human tendon samples for in vitro analysis so animal models are regularly adopted. However, data indicates that fatigue life varies significantly between tendons of different species and with different stresses in life. Positional tendons such as rat tail tendon or the bovine digital extensor are commonly applied in in vitro studies of tendon overuse, but there is no evidence to suggest their behaviour is indicative of the types of human tendon particularly prone to overuse injuries. In this study, the fatigue response of the largely positional digital extensor and the more energy storing deep digital flexor tendon of the bovine hoof were compared to the semitendinosus tendon of the human hamstring. Fascicles from each tendon type were subjected to either stress or strain controlled fatigue loading (cyclic creep or cyclic stress relaxation respectively). Gross fascicle mechanics were monitored after cyclic stress relaxation and the mean number of cycles to failure investigated with creep loading. Bovine extensor fascicles demonstrated the poorest fatigue response, while the energy storing human semitendinosus was the most fatigue resistant. Despite the superior fatigue response of the energy storing tendons, confocal imaging suggested a similar degree of damage in all three tendon types; it appears the more energy storing tendons are better able to withstand damage without detriment to mechanics.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
49
|
Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 2013; 47:2028-34. [PMID: 24280564 DOI: 10.1016/j.jbiomech.2013.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/06/2013] [Accepted: 10/28/2013] [Indexed: 12/16/2022]
Abstract
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R(2)=0.88-0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.
Collapse
|