1
|
ElAlfy MS, Ismail EAR, Makkeyah SM, Samir A, Salama DH, Salah Eldin NM, ElMaghraby DMF, Gad NA, Ali MFA, Ebeid FSE. Vasculopathy among children and adolescents with sickle cell disease: the crosstalk with annexin A1, vitamin D, and myocardial iron overload. Expert Rev Hematol 2025:1-10. [PMID: 40247642 DOI: 10.1080/17474086.2025.2495670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Annexin A1 plays an important role in myocardial defense against ischemia-reperfusion injury. We aimed to evaluate the role of annexin A1 as a potential marker of vasculopathy in children and adolescents with sickle cell disease (SCD) and its relation to myocardial iron content (MIC) and vitamin D status. RESEARCH DESIGN AND METHODS Forty-one patients with SCD were compared with 40 age- and sex-matched healthy controls, and underwent assessment of serum annexin A1, vitamin D, Doppler echocardiography and cardiac magnetic resonance (CMR). RESULTS Six (14.6%) SCD patients had cardiac disease, five (12.2%) had abnormal MIC (≥1.16) and 10 (24.4%) had pulmonary hypertension risk. Annexin A1 levels were significantly lower among patients with SCD compared with healthy controls (p < 0.001). SCD patients with pulmonary hypertension risk, evidence of diastolic dysfunction, and nephropathy as well as those with serum ferritin ≥ 2500 µg/L and vitamin D deficiency had lower Annexin A1 levels than those without. Serum annexin A1 levels were negatively correlated to urinary albumin creatinine ratio (UACR) and Tei index while positively correlated to vitamin D among SCD patients. CONCLUSIONS Annexin A1 could be a promising marker of vasculopathy and may provide a biochemical explanation for vitamin D deficiency in SCD.
Collapse
Affiliation(s)
- Mohsen Saleh ElAlfy
- Pediatric Hematology Oncology and BMT Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Sara Mostafa Makkeyah
- Pediatric Hematology Oncology and BMT Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Samir
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina Husseiny Salama
- Radiology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Dina Mohamed Fathy ElMaghraby
- Pediatric Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nada Ayman Gad
- Pediatric Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | | |
Collapse
|
2
|
Costa VV, Resende F, Melo EM, Teixeira MM. Resolution pharmacology and the treatment of infectious diseases. Br J Pharmacol 2024; 181:917-937. [PMID: 38355144 DOI: 10.1111/bph.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
Inflammation is elicited by the host in response to microbes, and is believed to be essential for protection against infection. However, we have previously hypothesized that excessive or misplaced inflammation may be a major contributor to tissue dysfunction and death associated with viral and bacterial infections. The resolutive phase of inflammation is a necessary condition to achieve homeostasis after acute inflammation. It is possible that targeting inflammation resolution may be beneficial for the host during infection. In this review, we summarize the evidence demonstrating the expression, roles and effects of the best described pro-resolving molecules in the context of bacterial and viral infections. Pro-resolving molecules play a pivotal role in modulating a spectrum of pathways associated with tissue inflammation and damage during both viral and bacterial infections. These molecules offer a blend of anti-inflammatory, pro-resolving and sometimes anti-infective benefits, all the while circumventing the undesired and immune-suppressive unwanted effects associated with glucocorticoids. Whether these beneficial effects will translate into benefits to patients clearly deserve further investigation.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Mathias Melo
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Li TT, Yao WQ, Dong HB, Wang ZR, Zhang ZY, Yuan MQ, Shi L, Wang FS. Plasma proteomics-based biomarkers for predicting response to mesenchymal stem cell therapy in severe COVID-19. Stem Cell Res Ther 2023; 14:350. [PMID: 38072927 PMCID: PMC10712100 DOI: 10.1186/s13287-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to identify potential biomarkers for predicting response to MSC therapy by pre-MSC treatment plasma proteomic profile in severe COVID-19 in order to optimize treatment choice. METHODS A total of 58 patients selected from our previous RCT cohort were enrolled in this study. MSC responders (n = 35) were defined as whose resolution of lung consolidation ≥ 51.99% (the median value for resolution of lung consolidation) from pre-MSC to 28 days post-MSC treatment, while non-responders (n = 23) were defined as whose resolution of lung consolidation < 51.99%. Plasma before MSC treatment was detected using data-independent acquisition (DIA) proteomics. Multivariate logistic regression analysis was used to identify pre-MSC treatment plasma proteomic biomarkers that might distinguish between responders and non-responders to MSC therapy. RESULTS In total, 1101 proteins were identified in plasma. Compared with the non-responders, the responders had three upregulated proteins (CSPG2, CTRB1, and OSCAR) and 10 downregulated proteins (ANXA1, AGRG6, CAPG, DDX55, KV133, LEG10, OXSR1, PICAL, PTGDS, and S100A8) in plasma before MSC treatment. Using logistic regression model, lower levels of DDX55, AGRG6, PICAL, and ANXA1 and higher levels of CTRB1 pre-MSC treatment were predictors of responders to MSC therapy, with AUC of the ROC at 0.910 (95% CI 0.818-1.000) in the training set. In the validation set, AUC of the ROC was 0.767 (95% CI 0.459-1.000). CONCLUSIONS The responsiveness to MSC therapy appears to depend on baseline level of DDX55, AGRG6, PICAL, CTRB1, and ANXA1. Clinicians should take these factors into consideration when making decision to initiate MSC therapy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tian-Tian Li
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
| | - Wei-Qi Yao
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, 430030, Hubei, People's Republic of China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Hai-Bo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Zi-Ying Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Meng-Qi Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Lei Shi
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| |
Collapse
|
4
|
Shenoy RD, Nithin Kuriakose, Vijaykrishnaraj M, Patil P, Jayaswamy PK, Alagundagi DB, Shetty P. Tissue plasminogen activator receptor ANXA2 and its complementary regulator anti-inflammatory ANXA1 as prognostic indicators of inflammatory response in COVID-19 pathogenesis. Immunobiology 2023; 228:152728. [PMID: 37579635 DOI: 10.1016/j.imbio.2023.152728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
COVID-19 patients demonstrating hyperactive immunologic response appear to have a severe illness with a poor prognosis. This study hypothesizes that the pro-inflammatory Annexin A2 (ANXA2) has role in COVID-19 pathogenesis. In thisobservational study, serum levels of ANXA2 along with interleukin 1 beta (IL1β), IL6, tumour necrosis factor-alpha (TNFα), and anti-inflammatory ANXA1 were determined by sandwich ELISA in 20 each control, mild, moderate, and severe COVID-19 subjects.The ANXA2 levels (130 ng/mL, p < 0.001) were significantly elevated in severe COVID-19 subjects, compared to mild, moderate and controls. Similarly, all the other pro-inflammatory biomarkers levels were also significantly correlated with disease severity (p < 0.0001). However, ANXA1 showed significantly negative correlation with disease severity (p < 0.0001). Furthermore, the pro-inflammatory ANXA2 showed utility in mortality prediction with 86% sensitivity and specificity, and 57% positive predictive value at a serum threshold of 94 ng/mL. Overall,ANXA2 and ANXA1 along with IL1β, IL6, TNFα, would be beneficial biomarkers in assessing the COVID-19 severity and mortality prediction.
Collapse
Affiliation(s)
- Rathika D Shenoy
- Department of Pediatrics, Justice K S Hegde Charitable Hospital, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Nithin Kuriakose
- Division of Proteomics and Cancer Biology, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Vijaykrishnaraj M
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Prakash Patil
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Pavan K Jayaswamy
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Dhananjay B Alagundagi
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India; Department of Biochemistry, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
5
|
Resende F, de Araújo S, Tavares LP, Teixeira MM, Costa VV. The Multifaceted Role of Annexin A1 in Viral Infections. Cells 2023; 12:1131. [PMID: 37190040 PMCID: PMC10137178 DOI: 10.3390/cells12081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.
Collapse
Affiliation(s)
- Filipe Resende
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone de Araújo
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
6
|
Lotfollahi M, Rybakov S, Hrovatin K, Hediyeh-Zadeh S, Talavera-López C, Misharin AV, Theis FJ. Biologically informed deep learning to query gene programs in single-cell atlases. Nat Cell Biol 2023; 25:337-350. [PMID: 36732632 PMCID: PMC9928587 DOI: 10.1038/s41556-022-01072-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/08/2022] [Indexed: 02/04/2023]
Abstract
The increasing availability of large-scale single-cell atlases has enabled the detailed description of cell states. In parallel, advances in deep learning allow rapid analysis of newly generated query datasets by mapping them into reference atlases. However, existing data transformations learned to map query data are not easily explainable using biologically known concepts such as genes or pathways. Here we propose expiMap, a biologically informed deep-learning architecture that enables single-cell reference mapping. ExpiMap learns to map cells into biologically understandable components representing known 'gene programs'. The activity of each cell for a gene program is learned while simultaneously refining them and learning de novo programs. We show that expiMap compares favourably to existing methods while bringing an additional layer of interpretability to integrative single-cell analysis. Furthermore, we demonstrate its applicability to analyse single-cell perturbation responses in different tissues and species and resolve responses of patients who have coronavirus disease 2019 to different treatments across cell types.
Collapse
Affiliation(s)
- Mohammad Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Wellcome Sanger Institute, Cambridge, UK
| | - Sergei Rybakov
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Karin Hrovatin
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Soroor Hediyeh-Zadeh
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Bioinformatics Division, WEHI, Melbourne, Victoria, Australia
| | - Carlos Talavera-López
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilian-Universität Klinikum, Munich, Germany
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
Predictive Value of Annenxin A1 for Disease Severity and Prognosis in Patients with Community-Acquired Pneumonia. Diagnostics (Basel) 2023; 13:diagnostics13030396. [PMID: 36766501 PMCID: PMC9914428 DOI: 10.3390/diagnostics13030396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This prospective, single-center study evaluated the clinical utility of annenxin (Anx)A1 level as a biomarker for determining the severity of illness and predicting the risk of death in hospitalized patients with community-acquired pneumonia (CAP). A total of 105 patients (53 with severe [S]CAP, 52 with non-SCAP) were enrolled from December 2020 to June 2021. Demographic and clinical data were recorded. Serum AnxA1 concentration on days one and six after admission was measured by enzyme-linked immunosorbent assay. AnxA1 level at admission was significantly higher in SCAP patients than in non-SCAP patients (p < 0.001) irrespective of CAP etiology and was positively correlated with Pneumonia Severity Index and Confusion, Uremia, Respiratory Rate, Blood Pressure, and Age ≥ 65 Years score. AnxA1 level was significantly lower on day six after treatment than on day one (p = 0.01). Disease severity was significantly higher in patents with AnxA1 level ≥254.13 ng/mL than in those with a level <254.13 ng/mL (p < 0.001). Kaplan-Meier analysis of 30-day mortality showed that AnxA1 level ≤670.84 ng/mL was associated with a significantly higher survival rate than a level >670.84 ng/mL. These results indicate that AnxA1 is a useful biomarker for early diagnosis and prognostic assessment of CAP.
Collapse
|
8
|
Busch MH, Timmermans SAMEG, Aendekerk JP, Ysermans R, Amiral J, Damoiseaux JGMC, Reutelingsperger CP, van Paassen P. Annexin A1 Is Associated with Adverse Clinical Outcomes in Patients with COVID-19. J Clin Med 2022; 11:jcm11247486. [PMID: 36556102 PMCID: PMC9781714 DOI: 10.3390/jcm11247486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by hyperinflammation, vascular damage, and hypercoagulability. Insufficient responses of Annexin A1 (AnxA1), a pro-resolving inhibitor of neutrophil infiltration and activation, might contribute to a severe course of the disease. We longitudinally evaluated AnxA1's role in terms of inflammation, vascular damage, and clinical outcomes in a large prospective cohort of patients with COVID-19. AnxA1 was measured at presentation and during follow-up in the sera of 220 consecutive patients who presented at our hospital during the first wave. AnxA1 was significantly higher in the moderate and severe cases of COVID-19 compared to the healthy controls. Elevated AnxA1 was associated with markers of inflammation and endothelial damage. AnxA1 was significantly higher in patients with thrombotic events and ICU admission. Multivariable logistic regression indicated baseline AnxA1 (per ten units) as a predictor of thrombotic events. Linear mixed models predicted that AnxA1 tended to increase more steeply over time in patients without adverse events, with a statistically significant rise in patients without thrombotic events. These findings might reflect an insufficient increase in AnxA1 as a response to the excessive hyperinflammation in COVID-19. Future studies should evaluate whether hyperinflammation could be reduced through the administration of human recombinant AnxA1 or Ac2-26 peptide.
Collapse
Affiliation(s)
- Matthias H. Busch
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Sjoerd A. M. E. G. Timmermans
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Joop P. Aendekerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Renée Ysermans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Jean Amiral
- Scientific Hemostasis, 95130 Franconville, France
| | - Jan G. M. C. Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-(0)43-3871198
| |
Collapse
|
9
|
Aksakal A, Kerget B. Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian J Med 2022; 54:154-158. [PMID: 36655460 PMCID: PMC11163338 DOI: 10.5152/eurasianjmed.2022.22336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023] Open
Abstract
Due to the COVID-19 pandemic, both the university hospital and the city hospital have faced a significant patient load in our city. During this period, academic articles were written that contributed significantly to the literature on both hospitals struggling with patient density. In our study, we aimed to compile medical articles about COVID-19 in our city using the Web of Science and PubMed database.
Collapse
Affiliation(s)
- Alperen Aksakal
- Department of Pulmonary Diseases, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Buğra Kerget
- Department of Pulmonary Diseases, Atatürk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
10
|
Aknouch I, Sridhar A, Freeze E, Giugliano FP, van Keulen BJ, Romijn M, Calitz C, García-Rodríguez I, Mulder L, Wildenberg ME, Muncan V, van Gils MJ, van Goudoever JB, Stittelaar KJ, Wolthers KC, Pajkrt D. Human milk inhibits some enveloped virus infections, including SARS-CoV-2, in an intestinal model. Life Sci Alliance 2022; 5:e202201432. [PMID: 35926873 PMCID: PMC9354649 DOI: 10.26508/lsa.202201432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
Human milk is important for antimicrobial defense in infants and has well demonstrated antiviral activity. We evaluated the protective ability of human milk against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in a human fetal intestinal cell culture model. We found that, in this model, human milk blocks SARS-CoV-2 replication, irrespective of the presence of SARS-CoV-2 spike-specific antibodies. Complete inhibition of both enveloped Middle East respiratory syndrome coronavirus and human respiratory syncytial virus infections was also observed, whereas no inhibition of non-enveloped enterovirus A71 infection was seen. Transcriptome analysis after 24 h of the intestinal monolayers treated with human milk showed large transcriptomic changes from human milk treatment, and subsequent analysis suggested that <i>ATP1A1</i> down-regulation by milk might be of importance. Inhibition of ATP1A1 blocked SARS-CoV-2 infection in our intestinal model, whereas no effect on EV-A71 infection was seen. Our data indicate that human milk has potent antiviral activity against particular (enveloped) viruses by potentially blocking the ATP1A1-mediated endocytic process.
Collapse
Affiliation(s)
- Ikrame Aknouch
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Viroclinics Xplore, Schaijk, The Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Eline Freeze
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Francesca Paola Giugliano
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Britt J van Keulen
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Michelle Romijn
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Carlemi Calitz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Inés García-Rodríguez
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Lance Mulder
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Vanesa Muncan
- Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology and Metabolism, Tytgat Institute for Intestinal and Liver Research, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit Emma Children's Hospital, Dutch National Human Milk Bank, Amsterdam, The Netherlands
| | - Koert J Stittelaar
- Department of Epidemiology, Bioinformatics and Animals Models, Wageningen University, Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
12
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|