1
|
Parvez AK, Jubyda FT, Karmakar J, Jahan A, Akter NE, Ayaz M, Kabir T, Akter S, Huq MA. Antimicrobial potential of biopolymers against foodborne pathogens: An updated review. Microb Pathog 2025; 204:107583. [PMID: 40228749 DOI: 10.1016/j.micpath.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Biopolymers are natural polymers produced by the cells of living organisms such as plants, animals, microbes, etc. As these natural molecules possess antimicrobial activities against pathogens, they can be a suitable candidate for antimicrobials combating drug-resistant microorganisms including food-borne pathogens. Plant-derived biopolymers such as cellulose, starch, pullulans; microbes-derived chitosan, poly-L-lysine; animal-derived collagen, gelatin, spongin, etc. are proven to possess antimicrobial properties. They exert their antimicrobial activity against food-borne pathogens namely Salmonella typhi, Vibrio cholerae, Bacillus cereus, Clostridium perfringens, E. coli, Campylobacter jejuni, Staphylococcus aureus, etc. As antimicrobial resistance becomes a global phenomenon and threatens the effective prevention and treatment of infections caused by pathogens, biopolymers could be a promising candidate/substitute for conventional antimicrobials available in markets. Biopolymers can have detrimental effects on microbial cells such as disruption of the cell walls and cell membranes; damage to the DNA caused by strand breakage, unwinding, or cross-linking resulting in impeded DNA transcription and replication; lowering the amount of energy required for metabolic processes by compromising the proton motive force. Biopolymers also interfere with the quorum sensing mechanism and biofilm formation of microbes and modulate the host immune system by downregulating mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways resulting in the decreased production of pro-inflammatory cytokines. Furthermore, conjugating these biopolymers with other antimicrobial agents could be a promising approach to control multidrug-resistant foodborne pathogens. This review provides an overview of the various sources of biopolymers with special reference to their antimicrobial applications, especially against foodborne pathogens, and highlights their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | - Fatema Tuz Jubyda
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Joyoshrie Karmakar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Airen Jahan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nayeem-E Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tabassum Kabir
- M Abdur Rahim Medical College Hospital, Dinajpur, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Md Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Kodešová T, Mašlejová A, Vlková E, Musilová Š, Horváthová K, Šubrtová Salmonová H. In Vitro Utilization of Prebiotics by Listeria monocytogenes. Microorganisms 2024; 12:1876. [PMID: 39338550 PMCID: PMC11433794 DOI: 10.3390/microorganisms12091876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Listeria monocytognes is an emerging pathogen responsible for the serious foodborne disease, listeriosis. The commensal gut microbiota is the first line of defense against pathogen internalization. The gut microbiome can be modified by prebiotic substrates, which are frequently added to food products and dietary supplements. Prebiotics should selectively support the growth of beneficial microbes and thus improve host health. Nevertheless, little is known about their effect on the growth of L. monocytogenes. The aim of this study was to evaluate the growth ability of four L. monocytogenes strains, representing the most common serotypes, on prebiotic oligosaccharides (beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose and 2'-fucosyllactose and a mixture of human milk oligosaccharides) as a sole carbon source. The results showed that only beta-(1,3)-D-glucan was metabolized by L. monocytogenes. These cell culture data suggest that beta-(1,3)-D-glucan may not be selectively utilized by healthy commensal bacteria, and its role in intestinal pathogen growth warrants further exploration in vivo.
Collapse
Affiliation(s)
- Tereza Kodešová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Anna Mašlejová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Šárka Musilová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Kristýna Horváthová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Hana Šubrtová Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| |
Collapse
|
3
|
The impact of incorporating Lactobacillus acidophilus bacteriocin with inulin and FOS on yogurt quality. Sci Rep 2022; 12:13401. [PMID: 35927320 PMCID: PMC9352778 DOI: 10.1038/s41598-022-17633-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
The current study aimed to figure out the effect of using a combination of 2% inulin, and 2% Fructo-oligosaccharides (FOS) with Lactobacillus acidophilus and their bacteriocin on some yogurt properties such as coagulation time, extending the shelf life of set yogurt and its microbiological quality, also the acceptance by consumers. The results indicated that coagulation time increased by 22.75% in yogurts prepared with Lactobacillus acidophilus and their bacteriocins compared to the control, and titratable acidity increased gradually in all treatments during storage. Hence control acidity (%) increased from 0.84 ± 0.02A at zero time to 1.23 ± 0.03A after 14 days of cold storage, while treatment (T4) was 0.72 ± 0.01C at zero time and reached 1.20 ± 0.5A after 39 days at the same conditions. The sensory properties showed the superiority of inulin, FOS, and Lactobacillus acidophilus bacteriocin groups. Lactobacillus bulgaricus, Streptococcus thermophiles, and Lactobacillus acidophilus count increased in the treatments compared to the control group, with an extended shelf life to 39 days of storage in the medicines containing lactobacillus acidophilus bacteriocin. Coliforms, Moulds, and yeasts did not detect in the treatments comprising 2% inulin, 2% FOS, and lactobacillus acidophilus bacteriocin for 39 days of refrigerated storage. This study proved that 2% inulin, 2% FOS, and Lactobacillus acidophilus bacteriocin fortification extended the shelf life by more than 5 weeks.
Collapse
|
4
|
Effect of linear and branched fructans on growth and probiotic characteristics of seven Lactobacillus spp. isolated from an autochthonous beverage from Chiapas, Mexico. Arch Microbiol 2022; 204:364. [DOI: 10.1007/s00203-022-02984-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/16/2023]
|
5
|
NASCIMENTO MG, SOUZA HMD, DELANI TCDO, CROZATTI TTDS, MARCOLINO VA, RUIZ SP, SAMPAIO AR, MIYOSHI JH, MATIOLI G. Fermented beverage obtained from soy and rice incorporated with inulin and oligosaccharides derived from succinoglycan. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Graciette MATIOLI
- Universidade Estadual de Maringá, Brasil; Universidade Estadual de Maringá, Brasil
| |
Collapse
|
6
|
Jang WJ, Kim CE, Jeon MH, Lee SJ, Lee JM, Lee EW, Hasan MT. Characterization of Pediococcus acidilactici FS2 isolated from Korean traditional fermented seafood and its blood cholesterol reduction effect in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Viability, Storage Stabilityand In Vitro Gastrointestinal Tolerance of Lactiplantibacillus plantarum Grown in Model Sugar Systems with Inulin and Fructooligosaccharide Supplementation. FERMENTATION 2021. [DOI: 10.3390/fermentation7040259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate the effects of inulin and fructooligosaccharides (FOS) supplementation on the viability, storage stability, and in vitro gastrointestinal tolerance of Lactiplantibacillus plantarum in different sugar systems using 24 h growth and 10 days survival studies at 37 °C, inulin, and FOS (0%, 0.5%, 1%, 2%, 3% and 4%) supplementation in 2%, 3%, and 4% glucose, fructose, lactose, and sucrose systems. Based on the highest percentage increase in growth index, sucrose and lactose were more suitable sugar substrates for inulin and FOS supplementation. In survival studies, based on cell viability, inulin supplementation showed a better protective effect than FOS in 3% and 4% sucrose and lactose systems. Four selected sucrose and lactose systems supplemented with inulin and FOS were used in a 12-week storage stability study at 4 °C. Inulin (3%, 4%) and FOS (2%, 4%) supplementation in sucrose and lactose systems greatly enhanced the refrigerated storage stability of L. plantarum. In the gastrointestinal tolerance study, an increase in the bacterial survival rate (%) showed that the supplementation of FOS in lactose and sucrose systems improved the storage viability of L. plantarum. Both inulin and FOS supplementation in sucrose and lactose systems improved the hydrophobicity, auto-aggregation, co-aggregation ability of L. plantarum with Escherichia coli and Enterococcus faecalis.
Collapse
|
8
|
Ashaolu TJ. Emerging applications of nanotechnologies to probiotics and prebiotics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang550000Vietnam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang550000Vietnam
| |
Collapse
|
9
|
Castellino M, Renna M, Leoni B, Calasso M, Difonzo G, Santamaria P, Gambacorta G, Caponio F, De Angelis M, Paradiso VM. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int J Mol Sci 2020; 21:E2285. [PMID: 32225036 PMCID: PMC7177810 DOI: 10.3390/ijms21072285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last few years, the application of nanotechnology to nutraceuticals has been rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together with the discussion of emerging applications of nanotechnologies in their formulation. Current research strategies are also discussed, in particular the promising use of nanofibers for the delivery of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the scientific literature, research on this prominent field is needed, covering effectiveness, bioavailability, and safety aspects.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, 9th km of Farah Abad Road, Mazandaran, 48181 68984 Sari, Iran
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Atanas G Atanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici (Napoli), Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
11
|
Todorov S, Cavicchioli V, Ananieva M, Bivolarski V, Vasileva T, Hinkov A, Todorov D, Shishkov S, Haertlé T, Iliev I, Nero L, Ivanova I. Expression of coagulin A with low cytotoxic activity by
Pediococcus pentosaceus
ST65ACC isolated from raw milk cheese. J Appl Microbiol 2019; 128:458-472. [DOI: 10.1111/jam.14492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- S.D. Todorov
- Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo Brazil
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - V.Q. Cavicchioli
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - M. Ananieva
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - V.P. Bivolarski
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - T.A. Vasileva
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - A.V. Hinkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - D.G. Todorov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - S. Shishkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - T. Haertlé
- Institut National de la Recherche Agronomique UR 1268 Biopolymeres Interactions Assemblages Nantes cedex 3 France
| | - I.N. Iliev
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - L.A. Nero
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - I.V. Ivanova
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| |
Collapse
|
12
|
de Souza de Azevedo PO, de Azevedo HF, Figueroa E, Converti A, Domínguez JM, de Souza Oliveira RP. Effects of pH and sugar supplements on bacteriocin-like inhibitory substance production by Pediococcus pentosaceus. Mol Biol Rep 2019; 46:4883-4891. [PMID: 31243723 DOI: 10.1007/s11033-019-04938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/20/2019] [Indexed: 11/28/2022]
Abstract
To improve bacteriocin-like inhibitory substance (BLIS) production by Pediococcus pentosaceus ATCC 43200, the influence of pH as well as the addition of sugars-either prebiotic (inulin) or not (sucrose)-on its metabolism were investigated. This strain was grown at pH 5.0 or 6.0 either in glucose-based MRS medium (control) or after addition of 0.5, 1.0 or 1.5% (w/w) sucrose and inulin (GSI-MRS) in the same percentages. In the control medium at pH 5.0, cell mass concentration after 48 h of fermentation (Xmax = 2.26 g/L), maximum specific growth rate (µmax = 0.180 h-1) and generation time (Tg = 3.84 h) were statistically coincident with those obtained in supplemented media. At pH 6.0 some variations occurred in these parameters between the control medium (Xmax = 2.68 g/L; µmax = 0.32 h-1; Tg = 2.17 h) and the above supplemented media (Xmax = 1.90, 2.52 and 1.86 g/L; µmax = 0.26, 0.33 and 0.32 h-1; Tg = 2.62, 2.06 and 2.11 h, respectively). Lactate production was remarkable at both pH values (13 and 16 g/L) and improved in all supplemented media, being 34 and 54% higher than in their respective control media, regardless of the concentration of these ingredients. Cell-free supernatant of the fermented control medium at pH 5.0 displayed an antimicrobial activity against Enterococcus 101 5.3% higher than that at pH 6.0 and even 20% higher than those of all supplemented media, regardless of the concentration of supplements. BLIS production was favored either at pH 5.0 or in the absence of any additional supplements, which were able, instead, to stimulate growth and lactate production by P. pentosaceus.
Collapse
Affiliation(s)
- Pamela Oliveira de Souza de Azevedo
- Department of Biochemical and Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, São Paulo, 05508-900, Brazil
| | - Hernando Fernandes de Azevedo
- Department of Biochemical and Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, São Paulo, 05508-900, Brazil
| | - Elías Figueroa
- Núcleo de Investigación en Producción Alimentaria. Departamento de Ciencias Biológicas y Químicas. Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145, Genoa, Italy
| | - José Manuel Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes 580, São Paulo, 05508-900, Brazil.
| |
Collapse
|
13
|
Evaluation of Factors Affecting Antimicrobial Activity of Bacteriocin from Lactobacillus plantarum Microencapsulated in Alginate-Gelatin Capsules and Its Application on Pork Meat as a Bio-Preservative. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061017. [PMID: 30897806 PMCID: PMC6466082 DOI: 10.3390/ijerph16061017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
Antimicrobial compounds from traditional fermented foods have shown activity against a wide range of pathogen and spoilage microorganisms for several years. In this study, a Lactic acid bacteria (LAB), isolated from Vietnamese traditional fermented yogurt (Lactobacillus plantarum SC01), was encapsulated in alginate-gelatin (ALG-GEL) and the effect of incubation temperature, medium pH and surfactants were assessed. The aims of this research were to evaluate antimicrobial activity of bacteriocin produced by L. plantarum SC01. Another aim the research was to study the quality of pork meat treated with its Bacteriocin in 2 h as a bio-preservative at different storage times (0 h, 12 h, 24 h and 48 h) in room temperature, compared to control (treated with salt 40.0%). The antimicrobial activity of L. plantarum SC01 was identified through the inhibition rate of five indicator organisms, including Escherichia coli, Salmonella sp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis by co-culture method. The results showed that L. plantarum SC01 microencapsulated in ALG-GEL (2.5% alginate and 6.0% gelatin, w/v) and 3.0% bacteria supplied into modified MRS medium (MRSOPTSC01) produced highly active compound inhibited the growth of indicator organisms at a density of 10⁴⁻10⁸ CFU/mL. Antibacterial compounds were highly active in a treatment at 80 °C; not to be affected by pH; affected by surfactant as Ethylenediaminetetraacetic acid (EDTA), Sodium dodecyl sulfate (SDS), and Tween. Moreover, LAB obtained from this study show the potent Bacteriocin in its usage as a preservative in food.
Collapse
|
14
|
Sabo SS, Converti A, Ichiwaki S, Oliveira RP. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J Dairy Sci 2019; 102:87-99. [DOI: 10.3168/jds.2018-14881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
15
|
Önal Darilmaz D, Sönmez Ş, Beyatli Y. The effects of inulin as a prebiotic supplement and the synbiotic interactions of probiotics to improve oxalate degrading activity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Derya Önal Darilmaz
- Department of Biotechnology and Molecular Biology; Faculty of Science and Letters; Aksaray University; 68100 Aksaray Turkey
| | - Şule Sönmez
- Department of Biology; Faculty of Science; Gazi University; 06500 Ankara Turkey
| | - Yavuz Beyatli
- Department of Biology; Faculty of Science; Gazi University; 06500 Ankara Turkey
| |
Collapse
|
16
|
Speranza B, Campaniello D, Monacis N, Bevilacqua A, Sinigaglia M, Corbo MR. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiol 2018; 72:16-22. [DOI: 10.1016/j.fm.2017.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023]
|
17
|
Arasu MV, Al-Dhabi NA. In vitro antifungal, probiotic, and antioxidant functional properties of a novel Lactobacillus paraplantarum isolated from fermented dates in Saudi Arabia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5287-5295. [PMID: 28480570 DOI: 10.1002/jsfa.8413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fermented foods produced using dates are used in Gulf countries as beneficial and healthful foods. The beneficial microbial flora in fermented dates contributes to maintaining the nutritional properties of dates by preventing the growth of spoilage fungi. Here, we examined the antifungal, probiotic, and antioxidant properties of the novel Lactobacillus strain D-3 isolated from fermented dates. RESULTS Analyzing the morphological, physiological, and biochemical characteristics of this strain demonstrated that it was similar to Lactobacillus species, and molecular-level amplification of the 16S rRNA gene showed that it belonged to Lactobacillus paraplantarum. Under shake flask cultivation using date juice, the strain produced significant amounts of ethanol and lactic, succinic, and acetic acids. Purification of benzoic acid extracted from the extracellular fermentation medium was confirmed by nuclear magnetic resonance, and infrared and mass spectral data revealed minimum inhibitory concentration values of 10, 20, 10, 5, and 10 mg mL-1 for Aspergillus fumigates, Curvularia lunata, Fusarium oxysporum, Gibberella moniliformis, and Penicillium chrysogenum, respectively. The strain showed several advantages, including the ability to survive under conditions similar to the gastrointestinal tract (low pH, bile salts, and antimicrobial susceptibility) and high levels of extracellular enzyme activities. The strain's growth patterns under various concentrations of H2 O2 and its scavenging properties towards hydroxyl radical (64.85%) and DPPH (84.97%) were also interesting properties. CONCLUSION The antifungal, probiotic, and antioxidant properties of L. paraplantarum D3 may provide health benefits to consumers. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Souza EC, Azevedo PODSD, Domínguez JM, Converti A, Oliveira RPDS. Influence of temperature and pH on the production of biosurfactant, bacteriocin and lactic acid byLactococcus lactisCECT-4434. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1306806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ellen Cristina Souza
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - José Manuel Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Genoa University, Genoa, Italy
| | | |
Collapse
|
19
|
Liu DM, Guo J, Zeng XA, Sun DW, Brennan CS, Zhou QX, Zhou JS. The probiotic role ofLactobacillus plantarumin reducing risks associated with cardiovascular disease. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dong-Mei Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Jun Guo
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Da-Wen Sun
- Food Refrigeration & Computerized Food Technology; University College Dublin; National University of Ireland; Belfield Dublin 4 Ireland
| | - Charles S. Brennan
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
- Centre for Food Research and Innovation; Department of Wine, Food and Molecular Biosciences; Lincoln University; Lincoln 85084 New Zealand
| | - Quan-Xing Zhou
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Jin-Song Zhou
- School of Food Science and Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
20
|
Bevilacqua A, Corbo MR, Sinigaglia M, Speranza B, Campaniello D, Altieri C. Effects of inulin, fructooligosaccharides/glucose and pH on the shape of the death kinetic ofLactobacillus reuteriDSM 20016. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Barbara Speranza
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Clelia Altieri
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|