1
|
Basak S, Annapure US. The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Res Int 2022; 161:111849. [DOI: 10.1016/j.foodres.2022.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
|
2
|
Niu H, Chen X, Luo T, Chen H, Fu X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Ohlmaier-Delgadillo F, Carvajal-Millan E, López-Franco YL, Islas-Osuna MA, Micard V, Antoine-Assor C, Rascón-Chu A. Ferulated Pectins and Ferulated Arabinoxylans Mixed Gel for Saccharomyces boulardii Entrapment in Electrosprayed Microbeads. Molecules 2021; 26:molecules26092478. [PMID: 33922853 PMCID: PMC8123030 DOI: 10.3390/molecules26092478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Ferulated polysaccharides such as pectin and arabinoxylan form covalent gels which are attractive for drug delivery or cell immobilization. Saccharomyces boulardii is a probiotic yeast known for providing humans with health benefits; however, its application is limited by viability loss under environmental stress. In this study, ferulated pectin from sugar beet solid waste (SBWP) and ferulated arabinoxylan from maize bioethanol waste (AX) were used to form a covalent mixed gel, which was in turn used to entrap S. boulardii (2.08 × 108 cells/mL) in microbeads using electrospray. SBWP presented a low degree of esterification (30%), which allowed gelation through Ca2+, making it possible to reduce microbead aggregation and coalescence by curing the particles in a 2% CaCl2 cross-linking solution. SBWP/AX and SBWP/AX+ S. boulardii microbeads presented a diameter of 214 and 344 µm, respectively, and a covalent cross-linking content (dimers di-FA and trimer tri-FA of ferulic acid) of 1.15 mg/g polysaccharide. The 8-5′, 8-O-4′and 5-5′di-FA isomers proportions were 79%, 18%, and 3%, respectively. Confocal laser scanning microscopy images of propidium iodide-stained yeasts confirmed cell viability before and after microbeads preparation by electrospray. SBWP/AX capability to entrap S. boulardii would represent an alternative for probiotic immobilization in tailored biomaterials and an opportunity for sustainable waste upcycling to value-added products.
Collapse
Affiliation(s)
- Federico Ohlmaier-Delgadillo
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
- Correspondence: (E.C.-M.); (A.R.-C.); Tel.: +52-(662)-289-2400 (E.C.-M. & A.R.-C.)
| | - Yolanda L. López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - María A. Islas-Osuna
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
| | - Valérie Micard
- IATE, INRAE, Institut Agro, University Montpellier, CEDEX 01, 34060 Montpellier, France; (V.M.); (C.A.-A.)
| | - Carole Antoine-Assor
- IATE, INRAE, Institut Agro, University Montpellier, CEDEX 01, 34060 Montpellier, France; (V.M.); (C.A.-A.)
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico; (F.O.-D.); (Y.L.L.-F.); (M.A.I.-O.)
- Correspondence: (E.C.-M.); (A.R.-C.); Tel.: +52-(662)-289-2400 (E.C.-M. & A.R.-C.)
| |
Collapse
|
4
|
Deng Z, Pan Y, Chen W, Chen W, Yun Y, Zhong Q, Zhang W, Chen H. Effects of cultivar and growth region on the structural, emulsifying and rheological characteristic of mango peel pectin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105707] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Li WJ, Fan ZG, Wu YY, Jiang ZG, Shi RC. Eco-friendly extraction and physicochemical properties of pectin from jackfruit peel waste with subcritical water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5283-5292. [PMID: 30953352 DOI: 10.1002/jsfa.9729] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Water is generally considered to be a safe and green solvent suitable for use in natural product extraction. In this study, an eco-friendly subcritical water method was used to extract pectin from waste jackfruit peel (JFP-S), which was compared with pectin obtained by the traditional citric acid method (JFP-C). RESULTS The extraction process was optimized using response surface methodology (RSM), and the optimum process parameters were as follows: extraction temperature 138 °C, extraction time 9.15 min, liquid / solid (L/S) ratio 17.03 mL g-1 . Under these conditions, the pectin yield was 149.6 g kg-1 (dry basis). Pectin obtained from the two extraction methods displayed a high degree of esterification and the monosaccharide composition was consistent. The galacturonic acid content of JFP-S and JFP-C was 52.27% and 56.99%, respectively. JFP-S had more hairy regions and side chains than JFP-C. The molecular weight of JFP-S was 113.3 kDa, which was significantly lower than that of JFP-C (174.3 kDa). Fourier-transform infrared spectroscopy (FTIR) indicated that two samples had similar pectin typical absorption peaks. According to differential scanning calorimetry (DSC), both JFP-S and JFP-C had relatively good thermal stability. JFP-S demonstrated lower apparent viscosity and elasticity than JFP-C. Meanwhile, the G' and G'' moduli of JFP-S were lower, which found expression in the gel textural characterization of the samples. CONCLUSION This work showed that the subcritical water method is an efficient, time-saving, and eco-friendly technology for the extraction of pectin from jackfruit peel compared with the traditional citric acid method. The physicochemical properties of pectin could be changed during subcritical water extraction. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Jia Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zhi-Guo Fan
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Ying-Ying Wu
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zhi-Guo Jiang
- College of Food Science and Technology, Hainan University, Haikou, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| | - Rui-Cheng Shi
- College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
7
|
Pińkowska H, Krzywonos M, Wolak P, Złocińska A. Pectin and Neutral Monosaccharides Production during the Simultaneous Hydrothermal Extraction of Waste Biomass from Refining of Sugar-Optimization with the Use of Doehlert Design. Molecules 2019; 24:molecules24030472. [PMID: 30699933 PMCID: PMC6385035 DOI: 10.3390/molecules24030472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 11/23/2022] Open
Abstract
We propose a one-stage hydrothermal extraction of sugar beet pulp leading to effective co-production of pectin and neutral monosaccharides with a relatively high yield and satisfactory purity without the presence of an acidic catalyst. The optimal experimental design methodology was used for modelling and optimizing the yield of pectin and neutral monosaccharides. In good agreement with experimental results (R2 = 0.955), the model predicts an optimal yield of pectin (approx. 121.1 g kg−1 ± 0.47 g kg−1) at a temperature and time of about 118.1 °C and 21.5 min, respectively. The highest yield of the sum of neutral monosaccharides (approx. 82.6 g kg−1 ± 0.72 g kg−1) was obtained at about 116.2 °C and 26.4 min (R2 = 0.976). The obtained results are suitable for industrial upscaling and may provide an incentive to implement a new, environmentally friendly, simple, and effective method for treating waste product from the sugar refining industry, which has proved onerous until now.
Collapse
Affiliation(s)
- Hanna Pińkowska
- Wrocław University of Economics, Department of Industrial Chemistry, Komandorska 118/120, 53-345 Wrocław, Poland.
| | - Małgorzata Krzywonos
- Wrocław University of Economics, Department of Bioprocess Engineering, Komandorska 118/120, 53-345 Wrocław, Poland.
| | - Paweł Wolak
- Wrocław University of Economics, Department of Industrial Chemistry, Komandorska 118/120, 53-345 Wrocław, Poland.
| | - Adrianna Złocińska
- Wrocław Medical University, Laboratory of Elemental Analysis and Structural Research, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
8
|
Chen P, Chen W, Jiang S, Zhong Q, Chen H, Chen W. Synergistic Effect of Laccase and Sugar Beet Pectin on the Properties of Concentrated Protein Emulsions and Its Application in Concentrated Coconut Milk. Molecules 2018; 23:molecules23102591. [PMID: 30308985 PMCID: PMC6222823 DOI: 10.3390/molecules23102591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
Concentrated coconut milk (CCM), a raw material from coconut products, is extremely unstable because of its high oil content (>30%). In this study, three model emulsions-primary emulsions stabilized by coconut proteins only, secondary emulsions stabilized by the conjugation of sugar beet pectin (SBP) and coconut protein, and laccase-treated secondary emulsions-were prepared to investigate the effects of different factors (coconut proteins, coconut proteins + SBP, laccase-treated emulsions) on the stability of model emulsions and the application of this method to real CCM. The stability of the emulsions was evaluated based on their interfacial tension, zeta potential, particle size distribution, rheological properties, and the assembly formation of SBP and coconut protein at the oil⁻water interface. Results showed that addition of SBP or laccase can increase the viscosity and reduce the interfacial tension of the emulsion, and the effect was concentration dependent. Zeta potential of the emulsion decreased with the increase of protein (from -16 to -32 mV) and addition of SBP (from -32 to -46 mV), and it was reduced when laccase was added (from -9.5 to -6.0 mV). The secondary emulsion exhibited the narrowest particle size distribution (from 0.1 to 20 μm); however, laccase-catalyzed secondary emulsions showed the best storage stability and no layering when the laccase content reached 10 U/100 g. Confocal laser scanning microscopy (CLSM) revealed that protein was adsorbed on the oil⁻water interface and SBP distributed in the continuous phase could undergo oxidative crosslinking by laccase. These results show that the stability of the concentrated emulsion can be effectively improved by adding SBP and laccase.
Collapse
Affiliation(s)
- Pusen Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Wenxue Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Shan Jiang
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Qiuping Zhong
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Haiming Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| | - Weijun Chen
- College of Food Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
KHUWIJITJARU P. Utilization of Plant-Based Agricultural Waste by Subcritical Water Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.11301/jsfe.17.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Pramote KHUWIJITJARU
- Department of Food Technology, Faculty of Engineering and Industrial Technology, Silpakorn University
- Graduate School of Agriculture, Kyoto University
| |
Collapse
|