1
|
Liu L, Jiang S, Xie W, Xu J, Zhao Y, Zeng M. Fortification of yogurt with oyster hydrolysate and evaluation of its in vitro digestive characteristics and anti-inflammatory activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
2
|
Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022; 62:8935-8953. [PMID: 34132606 DOI: 10.1080/10408398.2021.1937042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Rentería‐Ortega M, Salgado‐Cruz MDLP, Morales‐Sánchez E, Alamilla‐Beltrán L, Valdespino‐León M, Calderón‐Domínguez G. Glucose oxidase release of stressed chia mucilage‐sodium alginate capsules prepared by electrospraying. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minerva Rentería‐Ortega
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
| | - Ma de la Paz Salgado‐Cruz
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
- Consejo Nacional de Ciencia y Tecnología (CONACYT) Ciudad de México México
| | | | - Liliana Alamilla‐Beltrán
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
| | - Mariana Valdespino‐León
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
| | - Georgina Calderón‐Domínguez
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional Ciudad de México México
| |
Collapse
|
4
|
Sepúlveda CT, Zapata JE, Martínez-Álvarez O, Alemán A, Montero MP, Gómez-Guillén MC. The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Jones D, Caballero S, Davidov-Pardo G. Bioavailability of nanotechnology-based bioactives and nutraceuticals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:235-273. [PMID: 31151725 DOI: 10.1016/bs.afnr.2019.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioaccessibility and bioavailability of some hydrophobic bioactives (e.g., carotenoids, polyphenols, fat-soluble vitamins, phytosterols and fatty acids) are limited due to their low water solubility, and in some instances low chemical stability. Nanotechnology involving nanometric (r<500nm) delivery systems, can be used to improve the solubility and thus enhance the bioaccessibility and bioavailability of hydrophobic compounds. Nanometric delivery systems, derived from food grade phospholipids and biopolymers adopt many forms, including liposomes, micelles, micro/nanoemulsions, particles, polyelectrolyte complexes, and hydrogels. The small particle sizes and customized materials used to create delivery systems confer their unique properties such as higher stability and/or resistance to enzymatic activity in the gastrointestinal tract. This chapter provides an overview of bioaccessibility and bioavailability of different classes of hydrophobic bioactive compounds, focusing on nanometric delivery systems and methods of evaluation.
Collapse
Affiliation(s)
- Dena Jones
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA, United States
| | - Sarah Caballero
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA, United States
| | - Gabriel Davidov-Pardo
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA, United States.
| |
Collapse
|
6
|
Ding Z, Xiao J, Zhang Y, Jiang Y, Chen W, Hu J, Guo Y, Zhang B. Pharmacokinetics and liver uptake of three Schisandra lignans in rats after oral administration of liposome encapsulating β-cyclodextrin inclusion compound of Schisandra extract. J Liposome Res 2019; 29:121-132. [DOI: 10.1080/08982104.2018.1430830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jiajing Xiao
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
| | - Yue Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
- The First Hospital of Jilin University, Changchun, P. R. China
| | - Yueyao Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
| | - Weiqiang Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
| | - Jiahui Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
| | - Yu Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun City, Jilin Province, P. R. China
| | - Bingren Zhang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
7
|
Jampilek J, Kos J, Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E296. [PMID: 30791492 PMCID: PMC6409737 DOI: 10.3390/nano9020296] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Collapse
Affiliation(s)
- Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia.
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
8
|
Xie CL, Kang SS, Lu C, Choi YJ. Quantification of Multifunctional Dipeptide YA from Oyster Hydrolysate for Quality Control and Efficacy Evaluation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8437379. [PMID: 30345307 PMCID: PMC6174814 DOI: 10.1155/2018/8437379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
Abstract
YA is an angiotensin-I-converting enzyme- (ACE-) inhibitory peptide from oyster hydrolysate with antihypertensive activity. Its antioxidant and anti-inflammatory activity were investigated in this study. YA can dose-dependently quench DPPH and ABTS radical and inhibit lipopolysaccharide-induced nitric oxide in RAW 264.7 cells. YA is a multifunctional peptide and was selected as an indicator for quality control and efficacy evaluation of oyster hydrolysate. A practical HPLC/UV assay for YA quantification was developed and validated. It was proved to be accurate and reliable, according to parameters such as specificity, linearity, precision, and accuracy. The quantity results of YA showed that the stage of enzymatic hydrolysis was a critical control point for quality control; the efficacy of oyster hydrolysate can be enhanced after digested in the gastrointestinal tract due to the release of YA by brush border peptidases. Therefore, YA from oyster hydrolysate is a potential bioactive ingredient for functional foods to combat hypertension.
Collapse
Affiliation(s)
- Cheng-Liang Xie
- Department of Medical Statistics and Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, School of Public Health, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, School of Public Health, Sun Yat-Sen University, Guangzhou 510000, China
| | - Yeung Joon Choi
- Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|