1
|
Zang Z, Zhang Q, Huang X, Jiang C, He C, Wan F. Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Wang L, Zhang F, Wang J, Wang Q, Chen X, Cheng J, Zhang Y. Machine learning prediction of dual and dose-response effects of flavone carbon and oxygen glycosides on acrylamide formation. Front Nutr 2022; 9:1042590. [DOI: 10.3389/fnut.2022.1042590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
IntroductionThe extensive occurrence of acrylamide in heat processing foods has continuously raised a potential health risk for the public in the recent 20 years. Machine learning emerging as a robust computational tool has been highlighted for predicting the generation and control of processing contaminants.MethodsWe used the least squares support vector regression (LS-SVR) as a machine learning approach to investigate the effects of flavone carbon and oxygen glycosides on acrylamide formation under a low moisture condition. Acrylamide was prepared through oven heating via a potato-based model with equimolar doses of asparagine and reducing sugars.ResultsBoth inhibition and promotion effects were observed when the addition levels of flavonoids ranged 1–10,000 μmol/L. The formation of acrylamide could be effectively mitigated (37.6%–55.7%) when each kind of flavone carbon or oxygen glycoside (100 μmol/L) was added. The correlations between acrylamide content and trolox-equivalent antioxidant capacity (TEAC) within inhibitory range (R2 = 0.85) had an advantage over that within promotion range (R2 = 0.87) through multiple linear regression.DiscussionTaking ΔTEAC as a variable, a LS-SVR model was optimized as a predictive tool to estimate acrylamide content (R2inhibition = 0.87 and R2promotion = 0.91), which is pertinent for predicting the formation and elimination of acrylamide in the presence of exogenous antioxidants including flavonoids.
Collapse
|
3
|
Li M, Cui X, Jin L, Li M, Wei J. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:171-179. [PMID: 34891073 DOI: 10.1016/j.plaphy.2021.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
Angelica sinensis is a perennial herbaceous species that produces the bioactive metabolites ferulic acid and alkylphthalides widely applied in the treatment of cardio-cerebrovascular diseases. While the effects of bolting on plant biomass and metabolites accumulation have been partly investigated, the mechanism of bolting reducing metabolites biosynthesis is still limited. In this study, the root biomass, accumulations of ferulic acid, flavonoids and lignin, antioxidant capacity, and related genes expression at four different bolting stages were investigated. The results showed that there was a 2.2-, 2.4- and 2.9-fold decrease of the root biomass, ferulic acid and flavonoids contents, while a 2.9-fold increase of lignin content on a per plant basis during the bolting stages. The antioxidant capacity also exhibited significant decrease with growth and development. The differential expression levels of the 20 genes, which are involved in biosynthesis of ferulic acid (e.g. AsPAL1, As4CLs and AsHCT), flavonoids (e.g. AsCHS, AsCHI and AsI3'H) and lignin (e.g. AsCAD1 and AsLACs), were consistent with changes in the above metabolites accumulation. The findings will provide useful references for improving the production of bioactive metabolites in A. sinensis.
Collapse
Affiliation(s)
- Meiling Li
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiuwen Cui
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Mengfei Li
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
4
|
Yin H, Ni H, Zhang L, Wu W, Wu X, Zhang Z, Long H, Lei M, Hou J, Wu W. Untargeted metabolomics coupled with chemometric analysis deducing robust markers for discrimination of processing procedures: Wine-processed Angelica sinensis as a case study. J Sep Sci 2021; 44:4092-4110. [PMID: 34510721 DOI: 10.1002/jssc.202100566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022]
Abstract
Wine-processed Angelica Sinensis is a widely used Chinese medicinal decoction piece in China. However, there are hardly any robust markers indicating the processing procedure of wine-processed Angelica Sinensis, including the amount of rice wine and processing degree. A strategy integrating untargeted metabolomics and chemometric analysis for deducing robust markers was provided and applied to the discrimination of processing procedure. First, 86 compounds were tentatively identified in wine-processed Angelica Sinensis by ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Second, 93 potential chemical markers were selected using multivariate analysis, among which nine robust chemical markers were selected by verification with commercial samples. Finally, the effects of processing temperature, time, and amount of rice wine on the three selected chemical markers were investigated through a rapid analytical method. It was demonstrated that both m/z 258.1097 and 238.1189 were positively correlated with the amount of rice wine and processing degree. In summary, this study introduced two candidate processing markers as robust markers for discriminating the processing procedures of wine-processed Angelica sinensis. It also proposed a strategy to provide the reference for the research of other decoction pieces.
Collapse
Affiliation(s)
- Haoran Yin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hui Ni
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Linlin Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenyong Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xingdong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wanying Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
5
|
Xu R, Xu J, Li YC, Dai YT, Zhang SP, Wang G, Liu ZG, Dong LL, Chen SL. Integrated chemical and transcriptomic analyses unveils synthetic characteristics of different medicinal root parts of Angelica sinensis. CHINESE HERBAL MEDICINES 2020; 12:19-28. [PMID: 36117566 PMCID: PMC9476730 DOI: 10.1016/j.chmed.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/27/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Why are different medicinal parts including heads, bodies and tails of Angelicae Sinensis Radix (ASR) distinct in pharmaceutical activities? Here we explored their discrepancy in chemical constituents and transcriptome. Methods ASR were separated into three medicinal parts: heads (rootstocks with petiole traces of ASR), bodies (taproots of ASR) and tails (lateral roots of ASR), and chemical and transcriptomic analyses were conducted simultaneously. Results High performance liquid chromatography (HPLC) fingerprint results showed that five widely used active ingredients (ferulic acid, senkyunolide H, senkyunolide A, n-butylphathlide, and ligustilide) were distributed unevenly in the three ASR medicinal parts. Partial least squares-discriminant analysis (PLS-DA) demonstrated that the heads can be differentiated from the two other root parts due to different amounts of the main components. However, the content of ferulic acid (a main quality marker) was significantly higher in tails than in the heads and bodies. The transcriptome analysis found that 25,062, 10,148 and 29,504 unigenes were specifically expressed in the heads, bodies and tails, respectively. WGCNA analysis identified 17 co-expression modules, which were constructed from the 19,198 genes in the nine samples of ASR. Additionally, we identified 28 unigenes involved in two phenylpropanoid biosynthesis (PB) pathways about ferulic acid metabolism pathways, of which 17 unigenes (60.7%) in the PB pathway were highly expressed in the tails. The expression levels of PAL, C3H, and CQT transcripts were significantly higher in the tails than in other root parts. RT-qPCR analysis confirmed that PAL, C3H, and CQT genes were predominantly expressed in the tail parts, especially PAL, whose expression was more than doubled as compared with that in other root parts. Conclusion Chemical and transcriptomic analyses revealed the distribution contents and pivotal transcripts of the ferulic acid biosynthesis-related pathways. The spatial gene expression pattern partially explained the discrepancy of integral medicinal activities of three medicinal root parts.
Collapse
|
8
|
Physicochemical characterizations of polysaccharides from Angelica Sinensis Radix under different drying methods for various applications. Int J Biol Macromol 2018; 121:381-389. [PMID: 30315881 DOI: 10.1016/j.ijbiomac.2018.10.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/31/2023]
Abstract
Polysaccharides (ASP) were extracted from Angelica Sinensis Radix (ASR) and were subjected to freeze drying (ASP-FD), vacuum drying (ASP-VD), and hot air drying (ASP-HD). Structural characteristics, rheological and emulsifying properties, antioxidant, anticoagulant and alkaline phosphatase inhibitory activities of ASPs were firstly investigated. ASP-FD owned higher thermostability, unique morphological structure, uniform and the lowest molecular weight, which is suitable for using as a raw material for polysaccharide derivatives. Smaller viscosity of ASP-FD supplied a better appearance that consumers preferred and the smallest particle size was benefit to manufacture instant soluble products. ASP-VD behaved the highest neutral sugar content, protein content, intrinsic viscosities, and the best emulsifying activity, being a candidate for cosmetics additive. ASP-HD exhibited the highest apparent viscosities, higher thermostability, loose structure, and better bioactivities. Drying conditions had significant effect on the physicochemical properties and bioactivities of ASPs. ASPs with specific characteristics may meet the requirements for diverse applications.
Collapse
|