1
|
Rashnoei S, Shahamirian M, Yazdanpanah S, Ansarifar E. Development and evaluation of Chia seed-based nanofibers and nanoemulsions for Bacillus coagulans Encapsulation. Sci Rep 2025; 15:11039. [PMID: 40169587 PMCID: PMC11961576 DOI: 10.1038/s41598-025-87703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/21/2025] [Indexed: 04/03/2025] Open
Abstract
This study explores the encapsulation efficiency of composite nanofibers and nanoemulsions derived from chia seed mucilage (Salvia hispanica L.), a natural hydrocolloid with notable bioactive properties. Nanofibers, known for their high surface area and stability, and nanoemulsions, recognized for their enhanced bioavailability, were utilized to encapsulate Bacillus coagulans. Chia mucilage demonstrated a DPPH radical scavenging activity of 67.88% at 350 µg/mL and moderate antimicrobial effects, with inhibition zones of 9 mm and 6 mm against Staphylococcus aureus and Escherichia coli, respectively. Nanofibers prepared with 2-3% mucilage showed uniform morphology (diameters: 12.36-26.24 μm) and significantly higher encapsulation efficiency (93.90[Formula: see text]2.1) (p < 0.05) than nanoemulsions (88.33[Formula: see text]2). FTIR analysis confirmed the successful encapsulation of Bacillus coagulans, with characteristic peaks in the ranges of 1500-1600 cm⁻¹, 2800-3000 cm⁻¹, and 3200-3500 cm⁻¹. These findings suggest that chia seed mucilage-based nanofibers offer a stable and efficient platform for probiotic delivery, with promising applications in functional foods, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Shirin Rashnoei
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mozhgan Shahamirian
- Department of Chemistry, Faculty of Science, Sarvestan Branch, Islamic Azad University, 73451-173, Sarvestan, Iran.
| | - Sedigheh Yazdanpanah
- Department of Food Science and Technology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Elham Ansarifar
- Department of Pubic Health, School of Health, Birjand University of Medical Science, Birjand, Iran
| |
Collapse
|
2
|
Resende IF, Martins PMM, de Souza Melo D, Magnani M, Dias DR, Schwan RF. Development and characterization of microencapsulated Pichia kluyveri CCMA 0615 with probiotic properties and its application in fermented beverages. Int J Food Microbiol 2025; 427:110967. [PMID: 39520763 DOI: 10.1016/j.ijfoodmicro.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The study aimed to develop innovative microencapsulated formulations of strains with probiotic attributes, Pichia kluyveri CCMA 0615 and Saccharomyces cerevisiae CCMA 0732. The yeasts (8 log CFU/mL) were microencapsulated by spray drying technique using whey powder (WP - 15 %, 20 %, and 30 %) and sodium alginate (ALG - 1 %). The microcapsules and cell viability were characterized during two months of storage (4 °C and 25 °C). The selected formulations were applied to functional beverage fermentation, and viability and survival in the simulated gastrointestinal tract (GIT) were performed. The viability of yeasts microencapsulated by the spray drying method was shown to be dependent on the strain and encapsulating matrix used, ranging from 84 to 99 %. P. kluyveri required refrigeration when storing microcapsules. In functional beverage fermentation, microencapsulated yeast maintained the same fermentative profile with carbohydrate consumption, production of lactic acid (0.30 to 1.10 g/L) and alcohol (0.2 to 1.61 g/L), and greater viability during storage. Finally, the microencapsulation of P. kluyveri with 15 % WP + 1 % ALG maintained high viability under GIT conditions, whether exposed independently (>84 %) or incorporated into a food matrix (>94 %). The study demonstrated that this innovative microencapsulation of probiotic yeasts increases their viability, improves biotechnological application, and facilitates efficient delivery of probiotics to the host.
Collapse
Affiliation(s)
| | | | | | - Marciane Magnani
- Federal University of Paraiba, 50851-900 Joao Pessoa, PB, Brazil
| | | | | |
Collapse
|
3
|
Mynsen Machado Martins P, Nara Batista N, Augusto Oliveira Naves J, Ribeiro Dias D, Freitas Schwan R. Use of microencapsulated starter cultures by spray drying in coffee under self-induced anaerobiosis fermentation (SIAF). Food Res Int 2023; 172:113189. [PMID: 37689941 DOI: 10.1016/j.foodres.2023.113189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Using starter culture in liquid form is not economically viable in the coffee fermentation process. This work aimed to compare the fermentative performances of fresh and microencapsulated yeasts in coffee under self-induced anaerobic fermentation (SIAF). The inoculum permanence was monitored, and sugars, alcohols, acids, and volatile compounds were analyzed by chromatography. In addition, sensory analysis was performed on roasted beans. After 180 h of fermentation in the natural process, microencapsulated Torulaspora delbrueckii (MT) (7.97 × 107 cells/g) showed a higher population thanfresh Torulaspora delbrueckii (FT) (1.76 × 107 cells/g). The same acids and volatile compounds were detected in coffees with fresh and microencapsulated yeast. However, the yeast state influenced the concentration of the compounds. In pulped coffee, the coffee inoculated withmicroencapsulated Saccharomyces cerevisiae (MS) obtained the highest concentration of alcohols, esters, pyrazines, and others compared with fresh Saccharomyces cerevisiae (FS), with an increase of up to 47%. Furthermore, the coffee inoculated with MT obtained the highest concentration in almost all chemical classes in both processes compared with FT. These differences ranged up to 55%. Regarding sensory analysis, coffees inoculated with MS showed dominant notes of fruity, caramel, and nuts in the natural process. Otherwise, in pulped process, coffees inoculated with MT showed caramel, honey, and nuts. Therefore, the microencapsulated yeasts were metabolically active and may be considered with commercial potential. Considering the parameters analyzed, the most suitable yeast for natural and pulped processing would be MS and MT, respectively.
Collapse
|
4
|
Evangelista AG, Matté EHC, Corrêa JAF, Gonçalves FDR, Dos Santos JVG, Biauki GC, Milek MM, Costa LB, Luciano FB. Bioprotective potential of lactic acid bacteria for Salmonella biocontrol in vitro. Vet Res Commun 2023; 47:1357-1368. [PMID: 36823482 DOI: 10.1007/s11259-023-10083-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Lactic acid bacteria (LAB) are an important option for Salmonella control in animal production, resulting in lower antibiotic use. The objective of this research was to isolate LAB from meat products and from commercial probiotics sold as nutritional supplements for in vitro verification of their bioprotective potential. Eleven bacteria were identified as Pediococcus acidilactici, two as Lacticaseibacillus rhamnosus, one as Lacticaseibacillus paracasei paracasei, one as Limosilactobacillus fermentum, and one as a consortium of Lactobacillus delbrueckii bulgaricus and L. fermentum. All bacteria showed inhibitory activity against Salmonella, with emphasis on the inhibition of P. acidilactici PUCPR 011 against Salmonella Enteritidis 33SUSUP, S. Enteritidis 9SUSP, S. Enteritidis 56301, S. Enteritidis CRIFS 1016, Salmonella Typhimurium ATCC™ 14,028®, and Salmonella Gallinarum AL 1138, with inhibition halos of 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, 9.0 ± 1.8 mm, 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, and 7.3 ± 0.5, respectively. The isolates P. acidilactici PUCPR 011, P. acidilactici PUCPR 012, P. acidilactici PUCPR 014, L. fermentum PUCPR 005, L. paracasei paracasei PUCPR 013, and L. rhamnosus PUCPR 010 showed inhibition greater than 2 mm against at least 3 Salmonella and were used for encapsulation and in vitro digestion. The encapsulation efficiency ranged from 76.89 ± 1.54 to 116.48 ± 2.23%, and the population after 12 months of storage was from 5.31 ± 0.17 to 9.46 ± 0.09 log CFU/g. When simulating swine and chicken digestion, there was a large reduction in bacterial viability, stabilizing at concentrations close to 2.5 log CFU/mL after the analyses. The analyzed bacteria showed strong in vitro bioprotective potential; further analyses are required to determine in vivo effectiveness.
Collapse
Affiliation(s)
- Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| | - Eduardo Henrique Custódio Matté
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Jessica Audrey Feijó Corrêa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Francieli Dalvana Ribeiro Gonçalves
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - João Vitor Garcia Dos Santos
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Gabrieli Camila Biauki
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Mônica Moura Milek
- Undergraduate Program in Biotechnology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155 - Prado Velho, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
5
|
Mokhtarian Asl R, Nobakht A, Palangi V, Maggiolino A, Centoducati G. The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails. Animals (Basel) 2023; 13:2166. [PMID: 37443962 DOI: 10.3390/ani13132166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The present paper aims to evaluate the effect of different levels of bovine colostrum and probiotic dietary supplementation on egg production performance, egg traits, carcass characteristics, blood biochemistry and antioxidant status of laying Japanese quails. For the trial, 240 laying quails, aged between 24 weeks and 30 weeks, were involved in a 3 × 2 factorial experimental design, with 3 levels of bovine fresh colostrum (0, 2, and 4 percent of the total ratio) and 2 levels of probiotics (0 and 0.01 percent of the total ratio) administration. The colostrum supplementation improved the egg production performance, egg traits, carcass characteristics, blood biochemistry, and antioxidant status (p < 0.01). Probiotics used without colostrum did not affect the investigated traits of laying Japanese quails (p > 0.05), but a synergistic effect was observed when combined with colostrum. The overall results recommended that using 4% of bovine colostrum in laying Japanese quails, with the addition of 0.01% of probiotic feed additive results in positive effects on egg production performance, egg traits, carcass characteristics, blood biochemistry, and antioxidant status of laying Japanese quails in the late laying period.
Collapse
Affiliation(s)
- Reza Mokhtarian Asl
- Department of Animal Science, Maragheh Branch, Islamic Azad University, Maragheh 55, Iran
| | - Ali Nobakht
- Department of Animal Science, Maragheh Branch, Islamic Azad University, Maragheh 55, Iran
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, Izmir 35100, Türkiye
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| |
Collapse
|
6
|
Pereira de Andrade D, Bastos SC, Ramos CL, Simões LA, de Andrade Teixeira Fernandes N, Botrel DA, Magnani M, Schwan RF, Dias DR. Microencapsulation of presumptive probiotic bacteria Lactiplantibacillus plantarum CCMA 0359: technology and potential application in cream cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Pramanik S, Venkatraman S, Vaidyanathan VK. Development of engineered probiotics with tailored functional properties and their application in food science. Food Sci Biotechnol 2023; 32:453-470. [PMID: 36911322 PMCID: PMC9992677 DOI: 10.1007/s10068-023-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/27/2023] Open
Abstract
The potential health benefits of probiotics may not be cognized because of the substantial curtailment in their viability during food storage and passage through the gastrointestinal system. Intestinal flora composition, and resistance against pathogens are among the health benefits associated with probiotic consumption. In the gastric environment, pH 2.0, probiotics dramatically lose their viability during the transit through the gastrointestinal system. The challenge remains to maintain cell viability until it reaches the large intestine. In extreme conditions, such as a decrease in pH or an increase in temperature, encapsulation technology can enhance the viability of probiotics. Probiotic bacterial strains can be encapsulated in a variety of ways. The methods are broadly systematized into two categories, liquid and solid delivery systems. This review emphasizes the technology used in the research and commercial sectors to encapsulate probiotic cells while keeping them alive and the food matrix used to deliver these cells to consumers. Graphical abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India
| |
Collapse
|
8
|
Non-Lactic Probiotic Beverage Enriched with Microencapsulated Red Propolis: Microorganism Viability, Physicochemical Characteristics, and Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work aimed to develop a non-dairy functional beverage fermented with probiotic strains and fortified with Brazilian red propolis (microencapsulated and extracted). The non-dairy matrix consisted of oats (75 g), sunflower seeds (175 g), and almonds (75 g). It was fermented by a starter co-culture composed of Lactiplantibacillus plantarum CCMA 0743 and Debaryomyces hansenii CCMA 176. Scanning electron microscopy analysis was initially performed to verify the integrity of the microcapsules. The viability of the microorganisms after fermentation and storage, chemical composition (high performance liquid chromatography (HPLC) and gas chromatography coupled to mass spectrometry (GC-MS) analyses), rheology, antioxidant activity, and sensory profile of the beverages were determined. After fermentation and storage, the starter cultures were well adapted to the substrate, reducing the pH (6.50 to 4) and cell count above 7.0 log CFU/mL. Lactic acid was the main organic acid produced during fermentation and storage. In addition, 39 volatile compounds were detected by gas chromatography coupled to mass spectrometry (GC-MS), including acids, alcohols, aldehydes, alkanes, alkenes, esters, ethers, phenols, terpenes, and others. The addition of propolis extract increased the antioxidant and phenolic activity and the presence of volatile esters but reduced the beverage’s acceptability. The addition of microencapsulated propolis was more associated with the presence of higher alcohols and had similar acceptance to the control beverage. The combination of a non-dairy substrate, a starter co-culture, and the addition of propolis led to the development of a probiotic beverage with great potential for health benefits.
Collapse
|
9
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
10
|
Martins PMM, Batista NN, Santos LD, Dias DR, Schwan RF. Microencapsulation by spray drying of coffee epiphytic yeasts Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684. Braz J Microbiol 2022; 53:1565-1576. [PMID: 35676493 PMCID: PMC9433631 DOI: 10.1007/s42770-022-00776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022] Open
Abstract
The objective of this work was to evaluate the microencapsulation feasibility of Saccharomyces cerevisiae CCMA 0543 and Torulaspora delbrueckii CCMA 0684 in three different compositions of wall material by spray-dryer. The yeasts (109 CFU mL-1) were microencapsulated separately using maltodextrin (15%), maltodextrin (15%) with sucrose (2%), or maltose (2%) as wall material. The viability was evaluated for 6 months at two different temperatures (7 and 25 °C). The yield, cell viability after spray drying, and characterization of the microcapsules were performed. Results indicate that cell viability ranged between 94.06 and 97.97%. After 6 months, both yeasts stored at 7 °C and 25 °C presented 107 and 102 CFU mL-1, respectively. Regarding Fourier-transform infrared spectroscopy analysis, all microencapsulated yeasts presented typical spectra footprints of maltodextrin. After 6 months of storage, S. cerevisiae CCMA 0543 obtained a 10.8% increase in cell viability using maltodextrin with maltose as wall material compared to maltodextrin and maltodextrin with sucrose. However, T. delbrueckii CCMA 0684 obtained a 13.5% increase in cell viability using only maltodextrin. The study showed that maltodextrin as a wall material was efficient in the microencapsulation of yeasts. It is possible to assume that maltose incorporation increased the cell viability of S. cerevisiae CCMA 0543 during storage.
Collapse
Affiliation(s)
| | | | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | |
Collapse
|
11
|
Martins PMM, Batista NN, Santos LD, Dias DR, Schwan RF. Microencapsulation of epiphytic coffee yeasts by spray drying using different wall materials: Implementation in coffee medium. Int J Food Microbiol 2022; 379:109839. [PMID: 35868147 DOI: 10.1016/j.ijfoodmicro.2022.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The storage of microorganisms in liquid form is the main drawback of commercializing epiphytic coffee yeasts. This work aimed to evaluate the fermentative performance of microencapsulated yeasts by spray drying in a coffee peel and pulp media (CPM). The yeasts, Saccharomyces cerevisiae CCMA 0543, Torulaspora delbrueckii CCMA 0684, and Meyerozyma caribbica CCMA 1738, were microencapsulated using maltodextrin DE10 (MD), high maltose (MA), and whey powder (WP) as wall materials. A Central Composite Rotational Design (CCRD) was used to investigate the effect of operating parameters on the microcapsules' cell viability, drying yield, and water activity. Yeasts reached cell viability and drying yields above 90 and 50 %, respectively. WP maintained the cell viability of the three yeasts over 90 days of storage at room temperature (25 °C) and was selected as a wall material for the three yeasts. M. caribbica showed to be more sensitive to spray drying and less resistant to storage. Some differences were found in the fermentation of the CPM medium, but the microencapsulated yeasts maintained their biotechnological characteristics. Therefore, the microencapsulation of epiphytic coffee yeasts by spray drying was promising to be used in the coffee fermentation process.
Collapse
Affiliation(s)
| | - Nádia Nara Batista
- Biology Department, Federal University of Lavras, CEP 37200-900 Lavras, MG, Brazil
| | - Líbia Diniz Santos
- Federal University of Uberlândia, Faculty of Chemical Engineering, 290, CEP 38700-103 Patos de Minas, MG, Brazil
| | - Disney Ribeiro Dias
- Food Sciences Department, Federal University of Lavras, CEP 37200-900 Lavras, MG, Brazil
| | | |
Collapse
|
12
|
RAMA GR, DULLIUS D, AGNOL WD, ESQUERDO VM, LEHN DN, SOUZA CFVD. Ricotta whey supplemented with gelatin and collagen for the encapsulation of probiotic lactic acid bacteria. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.19720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Rama GR, Führ AJ, da Silva JABS, Gennari A, Giroldi M, Goettert MI, Volken de Souza CF. Encapsulation of Lactobacillus spp. using bovine and buffalo cheese whey and their application in orange juice. 3 Biotech 2020; 10:263. [PMID: 32509496 DOI: 10.1007/s13205-020-02255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate and compare the efficiency of bovine (CW) and buffalo cheese whey (BCW) as encapsulating agents for the spray-drying (SD) of endogenous Lactobacillus pentosus ML 82 and the reference strain Lactobacillus plantarum ATCC 8014. Their protective features were also tested for resistance to storage (90 days, 25 °C), simulated gastrointestinal tract (GIT) conditions, and for their application in orange juice. Survival rates after SD were approximately 95% in all samples tested, meaning both CW and BCW performed satisfactorily. After 90 days of storage, both species remained above 7 log Colony Forming Units (CFU)/g. However, CW generally enabled higher bacterial viability throughout this period. CW microcapsule characteristics were also more stable, which is indicated by the fact that BCW had higher moist content. Under GIT conditions, encapsulated lactobacilli had higher survival rates than free cells regardless of encapsulating agent. Even so, results indicate that CW and BCW perform better under gastric conditions than intestinal conditions. Regarding their use in orange juice, coating materials were probably dissolved due to low pH, and both free and encapsulated bacteria had similar survival rates. Overall, CW and BCW are suitable encapsulating agents for lactic acid bacteria, as they provided protection during storage and against harmful GIT conditions.
Collapse
Affiliation(s)
- Gabriela Rabaioli Rama
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| | - Ana Júlia Führ
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
| | - Jéssica Aparecida Bressan Soratto da Silva
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| | - Adriano Gennari
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| | - Maiara Giroldi
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| | - Márcia Inês Goettert
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratory of Food Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS 95914-014 Brazil
- Postgraduate Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, RS Brazil
- Postgraduate Program in Sustainable Environmental Systems, University of Vale do Taquari-Univates, Lajeado, RS Brazil
| |
Collapse
|
15
|
Use of a Taguchi Design in Hibiscus sabdariffa Extracts Encapsulated by Spray-Drying. Foods 2020; 9:foods9020128. [PMID: 31991688 PMCID: PMC7073635 DOI: 10.3390/foods9020128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/26/2023] Open
Abstract
Aqueous and ethanolic extracts of Hibiscus sabdariffa were spray-dried using maltodextrin (MD) and gum arabic (GA) as carrier agents. A Taguchi L8 experimental design with seven variables was implemented. Physicochemical properties in the encapsulates were evaluated by Ultraviolet-Visible (UV-Vis,) X-ray Diffraction (XRD), spectroscopy and gravimetric techniques. Treatments with aqueous extracts showed the highest concentration of total soluble polyphenols (TSP) 32.12-21.23 mg equivalent gallic acid (EAG)/g dry weight (DW), and antioxidant capacity (AOX) in the 2,2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) assay. The best treatment for TSP and AOX was T4: 2.5% Hibiscus w/w, aqueous extract, decoction, extract-to-carrier ratio 1:1 (w/w), proportion to carriers (MD:GA) 80:20 (w/w), 10,000 rpm, 150 °C. The Taguchi L8 design is a tool that allows the use of multiple variables with a low number of treatments that indicate the drying conditions that give the best parameters, focusing mainly on TSP and AOX, also, it is a good alternative for the preservation and stability of the phenolic compoudns in Hibiscus.
Collapse
|