1
|
Xue L, Wei W, Fu F, Tian H, Hu X, Zhang C. Riboflavin-mediated ultraviolet photosensitive oxidation of beef myofibrillar proteins with different storage times. Food Chem 2025; 471:142788. [PMID: 39788020 DOI: 10.1016/j.foodchem.2025.142788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The study was designed to investigate the mechanism of Riboflavin (RF)-mediated UVA photosensitive oxidation on beef myofibrillar proteins (MP) oxidized at different storage times. To elucidate the direct relationship between RF and protein oxidation, the mechanism of action was analyzed in terms of amino acid and side chain residues, protein structure, and protein oxidative metabolism. Oxidation of MP resulted in significant changes in the levels of carbonyls, sulfhydryls, Lysine, Arginine, Threonin, and Histidine. The oxidized MP secondary structure was changed, fluorescence intensity decreased, and surface hydrophobicity increased. Metabolomics results revealed that RF-mediated UVA photosensitized oxidation is primarily mediated by Riboflavin metabolism and co-regulated with Phenylalanine metabolism. Moreover, with the increase of frozen storage time, Arginine and proline metabolism was inhibited, and the contents of creatine were significantly reduced, which exacerbated MP oxidative damage. The results provide a theoretical basis for unraveling the mechanism of RF-mediated UVA photosensitive oxidation of MP.
Collapse
Affiliation(s)
- Liangyu Xue
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Wensong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China.
| | - Fangting Fu
- Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Huixin Tian
- Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China
| | - Xiaojia Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing 100193, China; Zibo Institute for Digital Agriculture and Rural Research, Zibo 255051, China.
| |
Collapse
|
2
|
Li J, Liu Y, Yang H, Cai L, Nong W, Guan W. The Activation of Endogenous Proteases in Shrimp Muscle Under Water-Free Live Transport. Foods 2024; 13:3472. [PMID: 39517256 PMCID: PMC11545398 DOI: 10.3390/foods13213472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Water-free transportation (WFT) causes shrimp (Penaeus vannamei) flesh quality deterioration. However, the roles of endogenous protease-induced protein hydrolysis have been neglected in the research. In the present study, calpain zymography, gelatinase zymography, the hematoxylin-eosin staining method, and other methods were applied to investigate the response of various endogenous proteases (cathepsin, calpain, and gelatinase), the myofibril fragmentation index (MFI), and the microscopic morphology of shrimp muscle during WFT in comparison with the shrimp under the conventional water transportation strategy (WT). The results showed that the total activity of proteases in shrimp muscle increased significantly (p ≤ 0.05) after simulated transportation. Cathepsins and gelatinases were activated during WFT. No significant (p > 0.05) changes of the activity of caspase-3 and the muscle cell apoptosis rate were detected in shrimp muscle cells after WFT. In addition, the MFI increased and the gap among muscle fiber bundles enlarged after WFT. Compared with WFT, no significant (p > 0.05) effect on the activities of calpain, gelatinase, and caspase-3 in the muscle of shrimp was found after WT, and only the activity of cathepsin L significantly increased (p ≤ 0.05). Based on the findings, we concluded that the activation of various endogenous proteases was induced during WFT.
Collapse
Affiliation(s)
- Jia Li
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Yuxin Liu
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Huanhuan Yang
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China;
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Weiliang Guan
- Department of Food Science, Guangxi University, Nanning 530004, China; (J.L.); (Y.L.); (H.Y.)
| |
Collapse
|
3
|
Li M, Zhang X, Yin Y, Li J, Qu C, Liu L, Zhang Y, Zhu Q, Wang S. Perspective of sodium reduction based on endogenous proteases via the strategy of sodium replacement in conjunction with mediated-curing. Crit Rev Food Sci Nutr 2024; 64:9353-9364. [PMID: 37216477 DOI: 10.1080/10408398.2023.2212287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NaCl is the main curing agent in dry-cured meat products, and a large amount of NaCl addition leads to high salt content of final products. Salt content and composition are important factors affecting the activity of endogenous proteases, which in turn could affect proteolysis as well as the quality of dry-cured meat products. With the increasing emphasis on the relationship between diet and health, reducing sodium content without sacrificing quality and safety of products is a great challenge for dry-cured meat industry. In this review, the change of endogenous proteases activity during processing, the potential relationship between sodium reduction strategy, endogenous proteases activity, and quality were summarized and discussed. The results showed that sodium replacement strategy and mediated-curing had a complementary advantage in influencing endogenous proteases activity. In addition, mediated-curing had the potential to salvage the negative effects of sodium substitution by affecting endogenous proteases. Based on the results, a sodium reduction strategy that sodium replacement in conjunction with mediated-curing based on endogenous proteases was proposed for the future perspective.
Collapse
Affiliation(s)
- Mingming Li
- China Meat Research Center, Beijing, China
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Xin Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Yantao Yin
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Jiapeng Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Chao Qu
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Linggao Liu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | | | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Shouwei Wang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| |
Collapse
|
4
|
Klementaviciute J, Zavistanaviciute P, Klupsaite D, Rocha JM, Gruzauskas R, Viskelis P, El Aouad N, Bartkiene E. Valorization of Dairy and Fruit/Berry Industry By-Products to Sustainable Marinades for Broilers' Wooden Breast Meat Quality Improvement. Foods 2024; 13:1367. [PMID: 38731738 PMCID: PMC11083194 DOI: 10.3390/foods13091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The study aims to improve the quality of wooden breast meat (WBM) via the use of newly developed marinades based on selected strains of lactic acid bacteria (LAB) in combination with the by-products of the dairy and fruit/berry industries. Six distinct marinades were produced based on milk permeate (MP) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu) with the addition of apple (ApBp) and blackcurrant (BcBp) processing by-products. The microbiological and acidity parameters of the fermented marinades were evaluated. The effects of marinades on the microbiological, technical, and physicochemical properties of meat were assessed following 24 and 48 h of WBM treatment. It was established that LAB viable counts in marinades were higher than 7.00 log10 colony-forming units (CFU)/mL and, after 48 h of marination, enterobacteria and molds/yeasts in WBM were absent. Marinated (24 and 48 h) WBM showed lower dry-matter and protein content, as well as water holding capacity, and exhibited higher drip loss (by 8.76%) and cooking loss (by 12.3%) in comparison with controls. After WBM treatment, biogenic amines decreased; besides, the absence of spermidine and phenylethylamine was observed in meat marinated for 48 h with a marinade prepared with Lu. Overall, this study highlights the potential advantages of the developed sustainable marinades in enhancing the safety and quality attributes of WBM.
Collapse
Affiliation(s)
- Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Romas Gruzauskas
- Artificial Intelligence Centre, Kaunas University of Technology, K. Donelaicio Str. 73, LT-44249 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy, Route de rabat km 15 Gzenaya BP 365 Tanger, University Abdelmalek Essaâdi, Tetouan 92000, Morocco;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (J.K.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Hu S, Xu X, Zhang W, Li C, Zhou G. Quality Control of Jinhua Ham from the Influence between Proteases Activities and Processing Parameters: A Review. Foods 2023; 12:foods12071454. [PMID: 37048273 PMCID: PMC10094101 DOI: 10.3390/foods12071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
Endogenous proteases are significant for Jinhua ham quality. Protein degradation affects the chemical traits, texture and the formation of flavor substances. Protease activities are affected by different process parameters, such as processing temperature, maturation time, salt content and the drying rate. They affect ham quality, which can be controlled by process parameters. The influences of key factors on Jinhua ham quality are briefly summarized, which can provide a theoretical basis for the selection of specific parameters in dry-cured ham processing. Furthermore, some suggestions are proposed for correcting and improving the flavor and textural defects of ham, yet the effectiveness depends on the operating conditions. The determination of enzyme activity is not real-time and unsupervised at the moment. Future research will focus on the determination of the actual endogenous protease activity and the quantitative relationship between the enzyme activity and main processing parameters.
Collapse
Affiliation(s)
- Shiqi Hu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Li Y, Bu Y, Guo H, Zhu W, Li J, Li X. The drip loss inhibitory mechanism of nanowarming in jumbo squid (Dosidicus gigas) mantles: protein structure and molecular dynamics simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4313-4321. [PMID: 35043406 DOI: 10.1002/jsfa.11783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The magnetic nanoparticles plus microwave thawing (MNPMT), a new rewarming technology entitled 'nanowarming', can serve as an effective method to achieve rapid and uniform thawing, thus reducing drip loss. The purpose of this study was to decipher the drip loss inhibitory mechanism of MNPMT in jumbo squid (Dosidicus gigas) from the perspectives of protein structure and ice crystal recrystallization. A number of different techniques such as dynamic rheology, Raman spectra, intrinsic fluorescence measurement, and ultraviolet (UV) absorption spectra were conducted to analyze myofibrillar protein conformation and stability of jumbo squid. Scanning electron microscopy (SEM) and myofibrillar fragmentation index (MFI) were used to observe the growth of ice crystals. The interaction between magnetic nanoparticles (MNPs) and ice crystals was studied by using molecular dynamic (MD) simulation. RESULTS MNPMT exhibited the highest storage modulus (G') value at 90 °C, suggesting the protein conformation was more stable. The increase in α-helices, fluorescence intensity and characteristic absorption peak of MNPMT illustrated that MNPMT can effectively maintain the secondary and tertiary structure of the protein. Compared with cold storage thawing (CST) and microwave thawing (MT), the MFI value of MNPMT was significantly decreased (P < 0.01). The result of MD simulation showed that MNPs displayed a tendency to gradually approach the surface of ice crystals, and induced a certain degree of damage to the ice crystal surface, thereby markedly inhibiting ice crystal recrystallization. CONCLUSION MNPMT can reduce the drip loss by keeping the protein conformation stable and inhibiting the recrystallization of ice crystals during the thawing process. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Huifang Guo
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Jianrong Li
- Department of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
7
|
The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022; 11:foods11162427. [PMID: 36010427 PMCID: PMC9407609 DOI: 10.3390/foods11162427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products. Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry. Its growth metabolism and derivative metabolites formed during the fermentation of meat products regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore, this paper mainly reviews the changes occurring in proteins in fermented meat products and their effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on protein degradation and oxidation from all over the world, this review aims to provide a relevant reference for improving the quality of fermented meat products.
Collapse
|