1
|
Reges BM, da Silva Oliveira FA, Fonteles TV, Rodrigues S. Changes in Human Colonic Microbiota Promoted by Synbiotic Açai Juice Composed of Gluco-Oligosaccharides, Dextran, and Bifidobacterium breve NRRL B-41408. Foods 2024; 13:4121. [PMID: 39767062 PMCID: PMC11675832 DOI: 10.3390/foods13244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The present study evaluates the effects of açai juice containing gluco-oligosaccharides and dextran, fermented by Bifidobacterium breve NRRL B-41408 (synbiotic juice), on the human fecal microbiota. The juice is subjected to simulated digestion and fecal fermentation after production and 42 days of refrigerated storage. High throughput 16S rRNA sequencing and HPLC are used to identify the bacterial cells and metabolites. The results show that the viability of B. breve is stable during the refrigerated storage, indicating that the metabolism is maintained even under low temperatures and pH. Furthermore, gluco-oligosaccharides and dextran prove to be resistant to gastrointestinal conditions and are quickly consumed during fecal fermentation. The synbiotic açai juice enhances the microbial diversity and stimulates the production of short-chain fatty acids (SCFA), including acetate, propionate, and isobutyrate. Elevated propionate levels are directly associated with an increased abundance of Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides xylanisolvens, Bacteroides dorei, Bacteroides stercoris, and Bacteroides massiliensis after 48 h of fermentation. This highlights the potential of synbiotic açai juice as a functional beverage, supported by the significant increase in microbial diversity reflected in the Shannon and Simpson's diversity indexes (Shannon = 116.6%, 117.2%, 125.15%, and 116.02%; Simpson's = 151.86%, 177.22%, 152.5%, and 163.73%).
Collapse
Affiliation(s)
- Bianca Mara Reges
- Food Engineering Department, Federal University of Ceara, Fortaleza 60440-900, CE, Brazil; (B.M.R.); (S.R.)
| | | | - Thatyane Vidal Fonteles
- Food Engineering Department, Federal University of Ceara, Fortaleza 60440-900, CE, Brazil; (B.M.R.); (S.R.)
| | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceara, Fortaleza 60440-900, CE, Brazil; (B.M.R.); (S.R.)
| |
Collapse
|
2
|
Ta LP, Corrigan S, Horniblow RD. Novel pectin-carboxymethylcellulose-based double-layered mucin/chitosan microcomposites successfully protect the next-generation probiotic Akkermansia muciniphila through simulated gastrointestinal transit and alter microbial communities within colonic ex vivo bioreactors. Int J Pharm 2024; 665:124670. [PMID: 39244071 DOI: 10.1016/j.ijpharm.2024.124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation was formed. Initially, a chitosan-based microcomposite was coated with mucin to establish a surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected, including carboxymethylcellulose (CMC), that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila under intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah Corrigan
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard D Horniblow
- Department of Biomedical Sciences, School of Infection, Inflammation, and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
4
|
Zhang W, Sadeghi A, Karaca AC, Zhang J, Jafari SM. Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Crit Rev Food Sci Nutr 2023; 64:12759-12779. [PMID: 37702799 DOI: 10.1080/10408398.2023.2257321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Probiotics (PRO) have been recognized for their significant role in promoting human health, particularly in relation to colon-related diseases. The effective delivery of PRO to the colon is a fascinating area of research. Among various delivery materials, carbohydrates have shown great potential as colon-targeted delivery (CTD) carriers for PRO. This review explores the connection between probiotics and colonic diseases, delving into their underlying mechanisms of action. Furthermore, it discusses current strategies for the targeted delivery of active substances to the colon. Unlike other reviews, this work specifically focuses on the utilization of carbohydrates, such as alginate, chitosan, pectin, and other carbohydrates, for probiotic colon-targeted delivery applications. Carbohydrates can undergo hydrolysis at the colonic site, allowing their oligosaccharides to function as prebiotics or as direct functional polysaccharides with beneficial effects. Furthermore, the development of multilayer self-assembled coatings using different carbohydrates enables the creation of enhanced delivery systems. Additionally, chemical modifications of carbohydrates, such as for adhesion and sensitivity, can be implemented to achieve more customized delivery of PRO.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Alireza Sadeghi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
5
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
6
|
Bauer-Estrada K, Sandoval-Cuellar C, Rojas-Muñoz Y, Quintanilla-Carvajal MX. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food Funct 2023; 14:32-55. [PMID: 36515144 DOI: 10.1039/d2fo02723b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiota can be a determining factor of the health status of the host by its association with some diseases. It is known that dietary intake can modulate this microbiota through the consumption of compounds like essential oils, unsaturated fatty acids, non-digestible fiber, and probiotics, among others. However, these kinds of compounds can be damaged in the gastrointestinal tract as they pass through it to reach the intestine. This is due to the aggressive and changing conditions of this tract. For this reason, to guarantee that compounds arrive in the intestine at an adequate concentration to exert a modulatory effect on the gut microbiota, encapsulation should be sought. In this paper, we review the current research on compounds that modulate the gut microbiota, the encapsulation techniques used to protect the compounds through the gastrointestinal tract, in vitro models of this tract, and how these encapsulates interact with the gut microbiota. Finally, an overview of the regulatory status of these encapsulates is presented. The key findings are that prebiotics are the best modulators of gut microbiota fermentation metabolites. Also, probiotics promote an increase of beneficial gut microorganisms, which in some cases promotes their fermentation metabolites as well. Spray drying, freeze drying, and electrodynamics are notable encapsulation techniques that permit high encapsulation efficiency, high viability, and, together with wall materials, a high degree of protection against gastrointestinal conditions, allowing controlled release in the intestine and exerting a modulatory effect on gut microbiota.
Collapse
|
7
|
Lee Y, Kang YR, Chang YH. Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
9
|
Talebian S, Schofield T, Valtchev P, Schindeler A, Kavanagh JM, Adil Q, Dehghani F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv Healthc Mater 2022; 11:e2102487. [PMID: 35189037 PMCID: PMC11468821 DOI: 10.1002/adhm.202102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics. However, majority of microencapsulated products only contain a single layer of protection around probiotics, which is likely to be inferior to more sophisticated approaches. This review discusses emerging methods for the multilayer encapsulation of probiotic using biopolymers. Correlations are drawn between fabrication techniques and the resultant microparticle properties. Subsequently, multilayer microparticles are categorized based on their layer designs. Recent reports of specific biopolymeric formulations are examined regarding their physical and biological properties. In particular, animal models of gastrointestinal transit and disease are highlighted, with respect to trials of multilayer microencapsulated probiotics. To conclude, novel materials and approaches for fabrication of multilayer structures are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Timothy Schofield
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
- Bioengineering & Molecular Medicine LaboratoryThe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadNSW2145Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Qayyum Adil
- PharmaCare Laboratories18 Jubilee AveWarriewoodNSW2102Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
10
|
Jiang Z, Li M, McClements DJ, Liu X, Liu F. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107438] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang B, Yang Y, Bian X, Guan HN, Liu LL, Li XX, Guo QQ, Piekoszewski W, Chen FL, Wu N, Ma ZQ, Shi YG, Zhang N. Proliferation of Bifidobacterium L80 under different proportions of milk protein hydrolysate. Microb Cell Fact 2021; 20:213. [PMID: 34794462 PMCID: PMC8600791 DOI: 10.1186/s12934-021-01702-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
The intestinal microecological environment is critical to an infant's growth. For those infants consuming milk power, it is very important to improve the intestinal microecological environment to promote the healthy growth of infants. In this paper, Milk protein hydrolysate (MPH), consisting of different proportions of proteins and small molecule peptides (5:5, 4:6, 3:7, 2:8, 1:9) were added to infant formula powder (IFP). The effects of MFP-enriched IFP addition on proliferation and metabolism of Bifidobacterium L80 were studied. Compared with MPH-free IFP, MFP-enriched IFP with 1:9 of proteins to small molecule peptides significantly enhanced the proliferation of Bifidobacterium L80, resulting in higher cell density, greater viable counts and higher titratable acidity. MFP-enriched IFP increased the content of seven organic acids and H2O2 in the system, and improved the antibacterial activity to E. coli BL21. This study suggested that MPH could be an effective addition to infant formula powder to promote the growth of Bifidobacterium, so to improve the intestinal health of infants.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Hua-Nan Guan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Lin-Lin Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Xue-Xia Li
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Qing-Qi Guo
- Forestry School, Northeast Forestry University, No. 26, Hexing Street, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland.,Far Eastern Federal University, School of Biomedicine, FEFU Campus, Russian Island, Vladivostok, Russian Federation
| | - Feng-Lian Chen
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Na Wu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Zhan-Qian Ma
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Yan-Guo Shi
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China.
| |
Collapse
|