1
|
Yadav MK, Song JH, Vasquez R, Lee JS, Kim IH, Kang DK. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria-A Systematic Review. Foods 2024; 13:3687. [PMID: 39594102 PMCID: PMC11594216 DOI: 10.3390/foods13223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Exopolysaccharides (EPSs) are large-molecular-weight, complex carbohydrate molecules and extracellularly secreted bio-polymers released by many microorganisms, including lactic acid bacteria (LAB). LAB are well known for their ability to produce a wide range of EPSs, which has received major attention. LAB-EPSs have the potential to improve health, and their applications are in the food and pharmaceutical industries. Several methods have been developed and optimized in recent years for producing, extracting, purifying, and characterizing LAB-produced EPSs. The simplest method of evaluating the production of EPSs is to observe morphological features, such as ropy and mucoid appearances of colonies. Ethanol precipitation is widely used to extract the EPSs from the cell-free supernatant and is generally purified using dialysis. The most commonly used method to quantify the carbohydrate content is phenol-sulfuric acid. The structural characteristics of EPSs are identified via Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy. The molecular weight and composition of monosaccharides are determined through size-exclusion chromatography, thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. The surface morphology of EPSs is observed via scanning electron microscopy and atomic force microscopy, whereas thermal characteristics are determined through thermogravimetry analysis, derivative thermogravimetry, and differential scanning calorimetry. In the present review, we discuss the different existing methods used for the detailed study of LAB-produced EPSs, which provide a comprehensive guide on LAB-EPS preparation, critically evaluating methods, addressing knowledge gaps and key challenges, and offering solutions to enhance reproducibility, scalability, and support for both research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (M.K.Y.); (J.H.S.); (R.V.); (J.S.L.); (I.H.K.)
| |
Collapse
|
2
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
Li F, Hu X, Sun X, Li H, Lu J, Li Y, Bao M. Effect of fermentation pH on the structure, rheological properties, and antioxidant activities of exopolysaccharides produced by Alteromonas australica QD. Glycoconj J 2022; 39:773-787. [PMID: 36367683 DOI: 10.1007/s10719-022-10087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The pH value was essential for the growth and metabolism of microorganisms. Acidic pH exopolysaccharide (AC-EPS) and alkaline pH exopolysaccharide (AL-EPS) secreted by A. australica QD mediated by pH were studied in this paper. The total carbohydrate content and molecular weight of AC-EPS (79.59% ± 2.24% (w/w), 8.374 × 105 Da) and AL-EPS (82.48% ± 1.46% (w/w), 6.182 × 105 Da) were estimated and compared. In AC-EPS, mannose (3.78%) and galactose (3.24%) content was more, while the proportion of glucuronic acid was less in comparison to AL-EPS. The scanning electron microscopy revealed the structural differences among the AC-EPS and AL-EPS. Thermogravimetric analysis showed degradation temperatures of 272.8 °C and 244.9 °C for AC-EPS and AL-EPS, respectively. AC-EPS was found to exhibit better rheological properties and emulsifying capabilities, while AL-EPS had superior antioxidant activities. Overall, both AC-EPS and AL-EPS have the potential to be used as emulsifiers and biological antioxidants.
Collapse
Affiliation(s)
- Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
4
|
Soundararajan D, Natarajan L, Trilokesh C, Harish B, Ameen F, Amirul Islam M, Uppuluri KB, Anbazhagan V. Isolation of exopolysaccharide, galactan from marine Vibrio sp. BPM 19 to template the synthesis of antimicrobial platinum nanocomposite. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Qian S, Yu Y, Ma J, Diao E, Ye S, Gao J, Liu Y, Hu W. Evaluation of a novel phosphorylated corn straw xylan for enhancement of thermal stability, crystallinity and functional activity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiquan Qian
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Yuting Yu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jing Ma
- School of Life Sciences Anhui Agricultural University Hefei 230036 China
| | - Enjie Diao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Shijia Ye
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jiamin Gao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Ying Liu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| |
Collapse
|