1
|
Jiang ZJ, Sun X, Guo XN, Zhu KX. Components and physicochemical properties of mill streams: Effects on freeze-thaw stability and quality of frozen steamed bread dough. Food Chem 2025; 478:143738. [PMID: 40056621 DOI: 10.1016/j.foodchem.2025.143738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study investigated the influence of five mill streams on the freeze-thaw (FT) stability of dough and steamed bread quality. The 1M2 stream (1st reduction) exhibited the longest stability time (7.24 min), maximum dough height (36.1 mm), and the highest specific volume (1.93 mL/g) of steamed bread. The 1S stream (1st sizing) had the highest water-extractable arabinoxylan content (0.62 %), which contributed to frozen dough stability and maintained a high specific volume (1.85 mL/g) throughout FT treatment. In contrast, the 3M stream (3rd reduction) showed the shortest stability time (5.83 min) and lowest specific volume (1.39 mL/g). Protein subunit and rheological analyses revealed that higher gliadin content in the 1M2 and 1S streams promoted dough extensibility, facilitating expansion during fermentation and steaming. These results demonstrate the key role of mill stream characteristics in determining dough FT stability and provide valuable insights for the use of specific mill streams in frozen dough.
Collapse
Affiliation(s)
- Zhao-Jing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiaohong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Luo H, Zhang Z, Zou Y, Tang Z, Gu M, Zhou Y, Zhao G. Quality improvements of reconstituted noodles by pre-hydrating gluten: Insights at different levels. Food Chem 2025; 472:142923. [PMID: 39827559 DOI: 10.1016/j.foodchem.2025.142923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Reconstituted noodles containing multi-grain are superior to plain noodles in terms of health benefits, but their lower gluten levels cause deterioration in cooking performance and textural quality. To this end, this study investigated the efficacy of gluten pre-hydration in a model dough. The results indicated that, with the increase in the ratio of pre-hydrated gluten, the final hydration level of gluten in reconstituted noodles, the proportion of ordered secondary structures of gluten, and the intensities of molecular interactions continuously increased, resulting in a more compact gluten network. This made the dough more deformable, granting noodles higher cooking resistance (optimal cooking time: 230 s to 265 s) and hardness (1837 g to 2538 g). Gluten pre-hydration was more effective, convenient, and cost-efficient than existing methods in improving the quality of reconstituted noodles. However, it lowered the yield and transparency of cooked noodles and made them yellowish.
Collapse
Affiliation(s)
- Haoran Luo
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yiyuan Zou
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Zhiling Tang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Miaomiao Gu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; College of Life Science, Sichuan Normal University, Chengdu 610101, PR China.
| |
Collapse
|
3
|
Du C, Zhu S, Li Y, Yang T, Huang D. Exploring the impact of selenium-enriched peptides from yeast autolysate on dough properties: Insights into mechanisms from gluten perspectives. Food Chem 2025; 464:141814. [PMID: 39481151 DOI: 10.1016/j.foodchem.2024.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
This study investigated the impact of Selenium (Se)-enriched yeast autolytic peptides (SeYAP) with different Se levels on dough properties as well as the related mechanism by focusing on gluten. SeYAP prolonged the dough's development time by up to 131 % and stability time by up to 28 %. It also decreased dough's viscoelasticity and rendered dough softer. Additionally, SeYAP diminished the binding capacity of dough to water and augmented the fluidity of water. Protein composition, disulfide bonds and fluorescence spectroscopy revealed that SeYAP could induce depolymerization of glutenin aggregate through sulfhydryl/disulfide bond exchange and hydrophobic interactions. Seven Se-enriched peptides were identified from the fraction with strong ability to depolymerize gluten. Specifically, six peptides contained selenocysteine, while another peptide contained selenomethionine. Molecular docking indicated that Se-enriched peptides could interact with amino acids (such as glutamine, tyrosine and proline) in gluten via hydrophobic interactions and/or hydrogen bonds.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
4
|
Du C, Zhu S, Li Y, Yang T, Huang D. Selenium-enriched yeast, a selenium supplement, improves the rheological properties and processability of dough: From the view of yeast metabolism and gluten alteration. Food Chem 2024; 458:140256. [PMID: 38959802 DOI: 10.1016/j.foodchem.2024.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
5
|
Zhao W, Weng J, Zhang X, Wang Y, Li P, Yang L, Sheng Q, Liu J. The impact of magnetic field-assisted freeze-thaw treatment on the quality of foxtail millet sourdough and steamed bread. Food Chem 2024; 450:139219. [PMID: 38640531 DOI: 10.1016/j.foodchem.2024.139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024]
Abstract
Foxtail millet and sourdough are used to make foxtail millet sourdough steamed bread to improve the flavor and taste. Compared with the conventional freeze-thaw treatment (CFT), the effect of magnetic field-assisted freeze-thaw treatment (MFT) on the storage quality of foxtail millet sourdough and steamed bread is explored. The results showed that compared with CFT, MFT shortened the phase transition time of dough; decreased the water loss rate, the water mobility, and the freezable water content; increased the fermentation volume; stabilized the rheological properties; and minimized the damage of freezing and thawing to the secondary structure and microstructure of the gluten. In addition, an analysis of the specific volume, texture, surface color, and texture structure showed that MFT was beneficial to slowing the deterioration of the steamed bread texture. Finally, MFT effectively inhibited the growth and recrystallization of ice crystals during freezing and thawing, improving the quality of millet dough and steamed bread.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jintong Weng
- College of Bioscience and Engineering, Hebei University of Economics and Trade, Shijiazhuang 050061, China
| | - Xiaodi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yunting Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Lei Yang
- College of Bioscience and Engineering, Hebei University of Economics and Trade, Shijiazhuang 050061, China
| | - Qinghai Sheng
- College of Bioscience and Engineering, Hebei University of Economics and Trade, Shijiazhuang 050061, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
| |
Collapse
|
6
|
Li W, Zhou Q, Xu J, Zhu S, Lv S, Yu Z, Yang Y, Liu Y, Zhou Y, Sui X, Zhang Q, Xiao Y. Insight into the solubilization mechanism of wheat gluten by protease modification from conformational change and molecular interaction perspective. Food Chem 2024; 447:138992. [PMID: 38503066 DOI: 10.1016/j.foodchem.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of β-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.
Collapse
Affiliation(s)
- Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Ye H, Zhang Y, Wang L, Ban J, Wei Y, Fan F, Guo B. Dynamic Study on Water State and Water Migration during Gluten-Starch Model Dough Development under Different Gluten Protein Contents. Foods 2024; 13:996. [PMID: 38611302 PMCID: PMC11012212 DOI: 10.3390/foods13070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Mixing is crucial for dough quality. The gluten content influences water migration in dough development and properties, leading to quality changes in dough-based products. Understanding how the gluten protein content influences water migration during dough development is necessary for dough processing. A compound flour with different gluten protein contents (GPCs, 10-26%, w/w) was used to study the dough farinograph parameters and water migration during dough development. According to the farinograph test of the gluten-starch model dough, the GPC increases the water absorption and the strength of the dough. Water migration was determined via low-field nuclear magnetic resonance (LF-NMR). With the increase in GPC, the gluten protein increases the binding ability of strongly bound water and promotes the transformation of weakly bound water. However, inappropriate GPC (10% and 26%, w/w) results in the release of free water, which is caused by damage to the gluten network according to the microstructure result. Moreover, the changes in proteins' secondary structures are related to the migration of weakly bound water. Therefore, weakly bound water plays an important role in dough development. Overall, these results provide a theoretical basis for the optimization of dough processing.
Collapse
Affiliation(s)
- Haoxuan Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (H.Y.); (Y.Z.); (Y.W.)
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (H.Y.); (Y.Z.); (Y.W.)
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lei Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (H.Y.); (Y.Z.); (Y.W.)
| | - Jinfu Ban
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China;
| | - Yimin Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (H.Y.); (Y.Z.); (Y.W.)
| | - Fanghui Fan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; (H.Y.); (Y.Z.); (Y.W.)
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
8
|
Liu X, Chen L, Chen L, Liu D, Liu H, Jiang D, Fu Y, Wang X. The Effect of Terminal Freezing and Thawing on the Quality of Frozen Dough: From the View of Water, Starch, and Protein Properties. Foods 2023; 12:3888. [PMID: 37959007 PMCID: PMC10648450 DOI: 10.3390/foods12213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Frozen dough is suitable for industrial cold chain transportation, but usually experiences temperature fluctuations through the cold chain to the store after being refrigerated in a factory, seriously damaging the product yield. In order to analyze the influence mechanism of temperature fluctuation during the terminal cold chain on frozen dough, the effects of terminal freezing and thawing (TFT) on the quality (texture and rheology) and component (water, starch, protein) behaviors of dough were investigated. Results showed that the TFT treatment significantly increased the hardness and decreased the springiness of dough and that the storage modules were also reduced. Furthermore, TFT increased the content of freezable water and reduced the bound water with increased migration. Additionally, the peak viscosity and breakdown value after TFT with the increased number of cycles were also increased. Moreover, the protein characteristics showed that the low-molecular-weight region and the β-sheet in the gluten secondary structure after the TFT treatment were increased, which was confirmed by the increased number of free sulfhydryl groups. Microstructure results showed that pores and loose connection were observed during the TFT treatment. In conclusion, the theoretical support was provided for understanding and eliminating the influence of the terminal nodes in a cold chain.
Collapse
Affiliation(s)
- Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Luncai Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dezheng Liu
- Hubei Selenium Grain Technology Group Co., Ltd., Enshi 445600, China;
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dengyue Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| |
Collapse
|
9
|
Haș IM, Vodnar DC, Bungau AF, Tarce AG, Tit DM, Teleky BE. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023; 12:3544. [PMID: 37835197 PMCID: PMC10572914 DOI: 10.3390/foods12193544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Interest in functional foods is continuously increasing, having the potential to be an ally in reducing cardiometabolic risk factors. This study focuses on developing and evaluating oat- and millet-based snack bars enriched with freeze-dried elderberry powder (FDEBP), aiming to combine great taste with enhanced nutritional value, antioxidant properties, and prebiotic potential. The research encompassed a sensory evaluation, nutritional assessment, and rheological analysis of the snack bars. A hedonic test was conducted to gauge consumer preferences and overall liking, providing insights into taste, texture, and acceptance. Sensory evaluation revealed positive feedback from participants, and acceptance rating scores ranged from 7 to 8.04, the best score recorded by one of the enhanced bars with 1% FDEBP. The rheological analysis determined the bars' dynamic storage modulus (G') and loss modulus (G″), assessing the material's elasticity and mechanical properties. Results showed that the incorporation of 0.5% and 1% FDEBP in the oat and millet snack bars significantly impacted their rheological properties, enhancing structural strength. Nutritional analysis demonstrated that the snack bars provided a complete mix of macronutrients required in a daily diet. The study sheds light on the potential of functional snack bars enriched with FDEBP, offering a delectable way to access essential nutrients and bioactive compounds in a minimally processed form, without the addition of sweeteners or additives, friendly to the gut microbiota.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Wei S, Wang N, Huang X, Xu G, Xu X, Xu D, Jin Y, Yang N, Wu F. Effect of germination on the quality characteristics and volatile compounds of fermented brown rice cake. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Tao H, Lu F, Zhu XF, Wang HL, Xu XM. Freezing-induced loss of wheat starch granule-associated proteins affected dough quality: From water distribution, rheological properties, microstructure, and gluten development. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Alpers T, Olma J, Jekle M, Becker T. Relation between polymer transitions and the extensional viscosity of dough systems during thermal stabilization assessed by lubricated squeezing flow. Food Chem 2022; 389:133048. [PMID: 35569246 DOI: 10.1016/j.foodchem.2022.133048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Polymer transitions occurring during the thermal processing of dough are defining the rheological behaviour of solidifying dough. Yeast, an essential ingredient in breadmaking, plays an important role in this transformation process, but its impact on the transitional behavior of the polymers remains unknown. Therefore, the aim of this study was to elucidate the impact of hydrothermally induced polymer transitions on the elongational rheological behavior of dough under process-relevant strain-strain-rate combinations transitions in dependence of the presence of yeast. Using elongational rheology together with DSC, TD-NMR and microscopy, yeast-induced degradation on the microstructural level (average decrease of protein strand length of 46%) and microstructural level were shown to affect the course of the starch gelatinization process and the functionality of gluten while baking. These findings can be used to relate oven rise performance to fundamental rheological behavior based on occurring phase transitions, leading to a more comprehensive process understanding.
Collapse
Affiliation(s)
- Thekla Alpers
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany
| | - Johanna Olma
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany
| | - Mario Jekle
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany; Department of Plant-Based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Thomas Becker
- Research Group Cereal Technology and Process Engineering, Chair of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
13
|
Dai Y, Gao H, Zeng J, Liu Y. Aggregation properties and structure of chia seed gum and gluten protein mixtures after freezing storage. Int J Biol Macromol 2022; 221:1093-1102. [PMID: 36113588 DOI: 10.1016/j.ijbiomac.2022.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022]
Abstract
Chia seed gum (CSG) plays an important role in the aggregation and structural properties of gluten protein. The experimental results showed that adding 1.0 % CSG increased the freezing rate and shortened the freezing time by 42.3 % compared with gluten without CSG. At the same time, CSG had no significant effect on the composition of the gluten subunit but could better control the change in binding water and delay the structural deterioration caused by the extension of time (30 d). The viscoelasticity of gluten was increased, but only with the addition of 0.2-0.6 % CSG. In addition, it increased the denaturation transition temperature (Tp) and the degradation temperature (Td) of gluten protein to reduce the occurrence of recrystallization and resist pyrolysis. During frozen storage, gluten can form fine ice crystals and inhibit the transformation of α-helices and β-turns to random coils and β-sheets, which is more conducive to long-term frozen storage.
Collapse
Affiliation(s)
- Yunfei Dai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yufen Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
14
|
Yang Z, Xu D, Zhou H, Wu F, Xu X. Rheological, microstructure and mixing behaviors of frozen dough reconstituted by wheat starch and gluten. Int J Biol Macromol 2022; 212:517-526. [PMID: 35623461 DOI: 10.1016/j.ijbiomac.2022.05.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
The effects of starch and gluten on the physicochemical properties of frozen dough were studied using reconstituted flour. The profiles of frozen dough were studied by Mixolab, rheometer, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Results revealed that starch, rather than gluten, played a decisive role in mixing properties. The breakdown and aggregation of the gluten network structure as well as the formation of β-turns and β-sheets in the frozen dough would be aggravated by the freezing of wheat starch. Smaller wheat starch granules (B-Type granules) affected the secondary structure of gluten network more than larger granules (A-Type granules), resulting in greater rheological property changes. The viscoelastic properties and freezable water content of frozen dough were more influenced by the freezing of gluten.
Collapse
Affiliation(s)
- Zixuan Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Hongling Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Precup G, Teleky BE, Ranga F, Vodnar DC. Assessment of Physicochemical and Rheological Properties of Xylo-Oligosaccharides and Glucose-Enriched Doughs Fermented with BB-12. BIOLOGY 2022; 11:biology11040553. [PMID: 35453752 PMCID: PMC9027653 DOI: 10.3390/biology11040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Xylo-oligosaccharides (XOS) are considered indigestible fibers that could support the growth of potentially beneficial gut microbes, thus classified as “prebiotics”. Prebiotics are “a substrate that is selectively utilized by host microorganisms conferring a health benefit” as defined by the International Scientific Association for Probiotics and Prebiotics. The current work aimed to study the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production and on the rheological properties of the doughs. The effect of XOS addition increased the production of organic acids, and positively influenced the rheological properties of the dough. Additionally, after frozen storage, there were no significant viscoelastic changes in the dough structure, which indicates that xylo-oligosaccharides improved the water retention capability of the dough. Through fermentation carbohydrates like, glucose, xylose, maltose, and XOS were consumed, and a high quantity of lactic and acetic acid were produced, organic acids with roles in the flavor generation and sensorial properties of the final product. This study showed the potential use of XOS as food ingredient in sourdoughs for bakery products manufacturing with improved quality and rheological properties. Abstract Xylo-oligosaccharides (XOS) are considered non-digestible fibers produced mainly from agricultural biomass and are classified as “emerging prebiotic” compounds. Since XOS were shown to promote the growth of bifidobacteria in the gut with potential effects on one’s health, scientists used them as food ingredients. For example, the addition of XOS in bakery products could improve their physicochemical characteristics. The current work aimed to investigate the effect of XOS and glucose addition on wheat flour sourdough fermented with Bifidobacterium animalis subsp. lactis (BB-12) strain in terms of organic acid production. The effect on viscoelastic changes during frozen storage and after the thawing process was also studied. The results showed that the viability of BB-12 increased slightly with the increase in XOS and glucose concentrations, which determined dough acidification due to accumulation of organic acids, that positively influenced the dough’s rheological properties such as a higher elasticity before and after frozen storage. With 10% XOS-addition, the acetic acid quantity reached 0.87 ± 0.03 mg/L, and the highest lactic acid concentration was found in the 10% XOS-enriched doughs, the glucose-enriched doughs and in the control sample (100% wheat dough). The quantity of glucose, maltose, XOS, and xylose decreased until the end of fermentation.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania; (G.P.); (F.R.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (B.-E.T.); (D.C.V.)
| |
Collapse
|
16
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
17
|
Feng W, Ma S, Huang J, Li L, Wang X, Bao Q. Recent advances in the technology of quick‐frozen baozi: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjuan Feng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Jihong Huang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Li Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Qingdan Bao
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
18
|
Beghin AS, Ooms N, Brijs K, Pareyt B, Moldenaers P, Delcour JA. How Yeast Impacts the Effect of Ascorbic Acid on Wheat Flour Dough Extensional Rheology. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09679-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. Food Chem 2021; 355:129650. [PMID: 33799245 DOI: 10.1016/j.foodchem.2021.129650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
In this study, structural characteristics and formation mechanism of Mesona chinensis polysaccharide (MCP)-whey protein isolate (WPI) gels including group and molecular changes, intermolecular forces, crystallinity, and moisture migration were investigated under pH shifting conditions. Results showed that MCP and WPI formed a stable gel at pH 10. The free sulfhydryl groups and surface hydrophobicity of the MCP-WPI gels increased with the increasing pH. Hydrophobic and hydrogen bond interactions were the main molecular forces involved in the MCP-WPI gels, and electrostatic interactions and disulfide bonds played a complementary role. The pH conditions evidently influenced the secondary conformational structure of MCP-WPI gels. Molecular weight and X-ray diffraction (XRD) analysis indicated the formation of a hypocrystalline complex with molecular interaction. In addition, low-field magnetometry (LF-NMR) results showed that the T2 values decreased with increasing pH, indicating that water and gel matrix had the highest interactions at pH 10.
Collapse
|