1
|
Liu Y, Wang Y, Cao J, Wu H, Yao Z. The polysaccharide-based nanoemulsions: Preparation, mechanism, and application in food preservation-A review. Int J Biol Macromol 2025; 309:142898. [PMID: 40203936 DOI: 10.1016/j.ijbiomac.2025.142898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
The stability and bioavailability of antioxidant, antibacterial, and other bioactive substances could be improved through nanoemulsion systems, as a result, nanoemulsion technology has become popular in food preservation. Polysaccharides are green polymers, their renewability, richness, safety, and functionality determine broad application prospects. Polysaccharide-based nanoemulsion coatings with good waterproofness, and mechanical and biological properties are found to effectively prevent or delay water loss, respiration, gas exchange, and microbial corruption of fruits, vegetables, and meat products, and they will be an important innovative technology for sustainable development in the future. The structural and functional properties of polysaccharides that could stabilize nanoemulsions have been discussed, and the preparation methods, physicochemical properties, stability, and formation mechanism of nanoemulsions have been summarized in this review. In addition, the preparation methods of polysaccharide-based nanoemulsion coatings are summarized, the application and preservation mechanisms in fruits, vegetables, and meat products have been introduced, and future perspectives have been discussed. At present, the related researches mainly focus on the bactericidal activity and the sensory quality of food products, while the in-depth research is unclear, this review provides ideas for the subsequent research on polysaccharide-based nanoemulsions for food preservation.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yibing Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Haige Wu
- College of Life and Health, Dalian University, Dalian 116600, Liaoning, China
| | - Ziang Yao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Omidian H, Cubeddu LX, Gill EJ. Harnessing Nanotechnology to Enhance Essential Oil Applications. Molecules 2025; 30:520. [PMID: 39942625 PMCID: PMC11821119 DOI: 10.3390/molecules30030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Essential oils (EOs) are versatile natural compounds with significant antimicrobial, antioxidant, antifungal, and therapeutic properties, making them valuable in industries such as food preservation, agriculture, and healthcare. However, their inherent volatility, low water solubility, and susceptibility to environmental degradation limit their direct applications. Nanotechnology offers transformative solutions to these challenges, enhancing the stability, bioavailability, and efficacy of EOs through innovative nano systems such as nano emulsions, encapsulations, and nanocomposites. This study explores the integration of nanotechnology with essential oils, emphasizing advanced preparation techniques, physicochemical properties, and diverse applications. It highlights sustainable approaches, including eco-friendly synthesis and biodegradable carriers, which align with global trends toward green chemistry. By addressing key challenges and proposing future directions, this research underscores the potential of EO nano systems to deliver multifunctional and environmentally conscious solutions for global challenges such as food security, antimicrobial resistance, and sustainable agriculture.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
3
|
Dhanasekaran S, Liang L, Gurusamy S, Yang Q, Zhang H. Chitosan stabilized lemon essential oil nanoemulsion controls black mold rot and maintains quality of table grapes. Int J Biol Macromol 2024; 277:134251. [PMID: 39084429 DOI: 10.1016/j.ijbiomac.2024.134251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Aspergillus carbonarius infection leads to black mold rot in table grapes, causes grape decay, reduces fruit quality and marketability, which produces significant economic losses. This study investigated the antifungal efficacy of chitosan-stabilized lemon essential oil nanoemulsion (LO-CNE) against A. carbonarius and black mold rot of table grapes. LO-CNE was prepared with a mean diameter of 130.01 ± 8.34 nm. LO-CNE exhibited superior antifungal activity, reduced spore germination and germ tube elongation, decreased the antioxidant enzyme activities in A. carbonarius; the minimal inhibitory concentration of LO-CNE was determined to be 30 mg/mL. LO-CNE reduced the occurrence of black mold rot by 63 % and lesion diameter by 56.78 % in table grapes compared to the control. At their peak activity level, the grapes treated with LO-CNE exhibited significantly enhanced antioxidant and defense-related enzyme activities. Specifically, polyphenol oxidase activity increased by 2.27-fold, peroxidase activity by 2.22-fold, superoxide dismutase activity by 0.68-fold, catalase activity by 1.61-fold, phenylalanine ammonia-lyase activity by 3.38-fold, and ascorbate peroxidase activity by 2.36-fold. The LO-CNE application reduced natural decay by 95 %, weight loss by 15 % compared to the control, and effectively maintained the quality parameters of table grapes. Therefore, LO-CNE can be considered an alternative disease-control agent for grape preservation.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
5
|
Das S, Maurya A, Singh VK, Chaudhari AK, Singh BK, Dwivedy AK, Dubey NK. Chitosan nanoemulsion incorporated with Carum carvi essential oil as ecofriendly alternative for mitigation of aflatoxin B 1 contamination in stored herbal raw materials. Int J Biol Macromol 2024; 270:132248. [PMID: 38729502 DOI: 10.1016/j.ijbiomac.2024.132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Das S, Chaudhari AK, Singh VK, Dwivedy AK, Dubey NK. Chitosan based encapsulation of Valeriana officinalis essential oil as edible coating for inhibition of fungi and aflatoxin B 1 contamination, nutritional quality improvement, and shelf life extension of Citrus sinensis fruits. Int J Biol Macromol 2023; 233:123565. [PMID: 36740131 DOI: 10.1016/j.ijbiomac.2023.123565] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 μL/mL, respectively and AFB1 production at 5.0 μL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Das S, Chaudhari AK, Singh VK, Singh BK, Dubey NK. High speed homogenization assisted encapsulation of synergistic essential oils formulation: Characterization, in vitro release study, safety profile, and efficacy towards mitigation of aflatoxin B 1 induced deterioration in rice samples. Food Chem Toxicol 2022; 169:113443. [PMID: 36167259 DOI: 10.1016/j.fct.2022.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Application of essential oils to mitigate aflatoxin B1 (AFB1) contamination in food is a current research hotspot; however, their direct incorporation may cause toxic effects, and changes in food organoleptic properties. This work aimed to synthesize novel synergistic formulation of Pinus roxburghii, Juniperus communis, and Cupressus sempervirens essential oils by mixture design assay (PJC) and encapsulation of PJC formulation into chitosan nanocomposite (Nm-PJC) with an aim to protect stored rice (Oryza sativa L., prime staple food) against fungi and AFB1 mediated loss of valuable minerals, macronutrients, and fatty acids. Nm-PJC was characterized through DLS, SEM, FTIR, and XRD analyses, along with controlled delivery from chitosan nanobiopolymer. Encapsulation of synergistic formulation into chitosan-nanomatrix improved antifungal (4.0 μL/mL), antiaflatoxigenic (3.5 μL/mL), and antioxidant activities (P < 0.05). Impairment in ergosterol and methylglyoxal biosynthesis along with in-silico-homology-modeling of major components with Ver-1 and Omt-A proteins advocated chemico-molecular interaction responsible for fungal growth inhibition and AFB1 secretion. In addition, in-situ efficacy against lipid-peroxidation, fatty acid biodeterioration, and preservation of minerals, macronutrients without affecting organoleptic attributes in rice and high mammalian safety profile (9874.23 μL/kg) suggested practical application of synergistic nanoformulation as innovative smart, and green candidate to mitigate AFB1 contamination, and shelf-life extension of stored food products.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Government Girls' P.G. College, Ghazipur, 233001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya, 224123, Uttar Pradesh, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|