1
|
Sharma S, Kumari B, Ali A, Patel PK, Sharma AK, Nair R, Singh PK, Hajela K. Mannose-binding lectin gene 2 variant DD (rs 5030737) is associated with susceptibility to COVID-19 infection in the urban population of Patna City (India). Mol Genet Genomics 2023; 298:955-963. [PMID: 37204457 PMCID: PMC10196310 DOI: 10.1007/s00438-023-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The study aimed to measure plasma levels of Mannose-Binding Lectin (MBL) and MBL-associated serine protease-2 (MASP-2) and their polymorphisms in COVID-19 patients and controls to detect association. As MBL is a protein of immunological importance, it may contribute to the first-line host defence against SARS-CoV-2. MBL initiates the lectin pathway of complement activation with help of MASP-1 and MASP-2. Hence, appropriate serum levels of MBL and MASPs are crucial in getting protection from the disease. The polymorphisms of MBL and MASP genes affect their plasma levels, impacting their protective function and thus may manifest susceptibility, extreme variability in the clinical symptoms and progression of COVID-19 disease. The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively.The present study was conducted to find plasma levels and genetic variations in MBL and MASP-2 in COVID-19 patients and controls using PCR-RFLP and ELISA, respectively. Our results indicate that median serum levels of MBL and MASP-2 were significantly low in diseased cases but attained normal levels on recovery. Only genotype DD was found to be associated with COVID-19 cases in the urban population of Patna city.
Collapse
Affiliation(s)
- Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India.
| | - Bandana Kumari
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Pankaj Kumar Patel
- Department of Botany, SBN Government PG College, Barwani, 451551, MP, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | - Rathish Nair
- College of Nursing, All India Institute of Medical Sciences, Patna, 801507, Bihar, India
| | | | - Krishnan Hajela
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, 452014, MP, India
| |
Collapse
|
2
|
Damoah CE, Snir O, Hindberg K, Garred P, Ludviksen JK, Brækkan SK, Morelli VM, Eirik Mollnes T, Hansen JB. High Levels of Complement Activating Enzyme MASP-2 Are Associated With the Risk of Future Incident Venous Thromboembolism. Arterioscler Thromb Vasc Biol 2022; 42:1186-1197. [PMID: 35861070 DOI: 10.1161/atvbaha.122.317746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. METHODS We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. RESULTS Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06-2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23-2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01-1.05] P=0.0011). CONCLUSIONS Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE.
Collapse
Affiliation(s)
- Christabel Esi Damoah
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Kristian Hindberg
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.)
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark (P.G.)
| | | | - Sigrid K Brækkan
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Vânia M Morelli
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Research Laboratory, Nordland Hospital, Bodø, Norway (J.K.L., T.E.M.).,Department of Immunology, Oslo University Hospital and University of Oslo, Norway (T.E.M.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.)
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center, UiT The Arctic University of Norway, Tromsø (C.E.D., O.S., K.H., S.K.B., V.M.M., T.E.M., J.-B.H.).,Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway (S.K.B., V.M.M., J.-B.H.)
| | | |
Collapse
|
3
|
Hayashi M, Abe K, Fujita M, Takahashi A, Sekine H, Ohira H. Circulating complement factor H levels are associated with disease severity and relapse in autoimmune hepatitis. JHEP Rep 2022; 4:100497. [PMID: 35677590 PMCID: PMC9167978 DOI: 10.1016/j.jhepr.2022.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Background & Aims The complement system plays pivotal roles in innate immunity. Mannose-binding lectin-associated serine protease (MASP)-2 plays essential roles in the activation of the lectin complement pathway. Complement factor H acts as a critical negative regulator of the alternative complement pathway. The association of circulating MASP-2 and factor H with the clinical features of patients with autoimmune hepatitis (AIH) is unclear. Methods A total of 63 patients with AIH were recruited for this study. The serum levels of MASP-2, factor H, and C3a were measured, and their associations with the clinical features of AIH were analyzed. Results The circulating C3a levels were higher in patients with AIH than in the controls. The circulating MASP-2 and factor H levels were decreased depending on the severity of AIH. Multivariate logistic analysis showed that low circulating factor H levels were associated with features of severe AIH (odds ratio 0.36; 95% CI 0.15-0.84; p = 0.018). Multivariate Cox proportional hazards model analysis showed that low circulating factor H levels were associated with a high incidence of relapse (hazard ratio: 5.19; 95% CI 1.07–25.2; p = 0.041). Patients with low circulating factor H levels showed higher rates of relapse than the controls (log-rank, p = 0.006). Conclusion Circulating factor H levels were associated with severe disease and with the incidence of relapse, suggesting a role for the complement system in the pathophysiology of AIH. Lay summary Autoimmune hepatitis is an immune-mediated liver disease. Despite effective treatments, patients often relapse, which can lead to clinical deterioration and adverse outcomes. Herein, we studied the importance of the complement system (a form of innate immunity) in patients with autoimmune hepatitis. We found that the levels of a protein called factor H, which regulates the complement system, could be a potential biomarker of disease severity and relapse, and could even have therapeutic potential for patients with AIH. We measured serum MASP-2 and factor H in patients with AIH. Serum MASP-2 and factor H levels were lower in patients with severe AIH. Patients with AIH and low factor H before treatment showed a high rate of relapse.
Collapse
|
4
|
Impact of MASP2 gene polymorphism and gene-tea drinking interaction on susceptibility to tuberculosis. Sci Rep 2021; 11:6544. [PMID: 33753877 PMCID: PMC7985323 DOI: 10.1038/s41598-021-86129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Mannan-binding lectin-associated serine protease-2 (MASP-2) has been reported to play an important role as a key enzyme in the lectin pathway of the complement system. The objectives of our study were to determine whether the single-nucleotide polymorphism (SNPs) of MASP2 and the gene-tea drinking interaction were associated with the susceptibility to TB. In total, 503 patients and 494 healthy controls were contained. Three SNPs (rs12142107, rs12711521, and rs7548659) were genotyped. The association between the SNPs and susceptibility to TB were investigated by conducting multivariate unconditional logistic regression analysis. The gene-tea drinking interactions were analyzed by the additive model of marginal structural linear odds models. Both genotype AC + AA at rs12711521 of MASP2 genes and genotype GT + GG at rs7548659 of MASP2 genes were more prevalent in the TB patient group than the healthy control group (OR: 1.423 and 1.439, respectively, P < 0.05). In addition, The relative excess risk of interaction (RERI) between tea drinking and rs12142107, rs12711521, and rs7548659 of MASP2 genes was found to suggest negative interactions, which reached − 0.2311 (95% confidence interval (CI): − 0.4736, − 0.0113), − 0.7080 (95% CI − 1.3998, − 0.0163), and − 0.5140 (95% CI − 0.8988, − 0.1291), respectively (P < 0.05). Our finding indicated that the SNPs (rs12711521 and rs7548659) of MASP2 were associated with the susceptibility to TB. Furthermore, there were negative interactions between tea drinking and rs12142107, rs12711521, and rs75548659 of MASP2 gene, respectively. Our research provides a basis for studying the pathogenesis and prevention of tuberculosis.
Collapse
|
5
|
Chen C, Gao Q, Luo Y, Zhang G, Xu X, Li Z, Wang J, He Q, Sheng L, Ma X. The immunotherapy with hMASP-2 DNA nanolipoplexes against echinococcosis in experimentally protoscolex-infected mice. Acta Trop 2020; 210:105579. [PMID: 32535067 DOI: 10.1016/j.actatropica.2020.105579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Cystic echinococcosis (CE), a complex and neglected zoonotic infectious disease, is mainly caused by larval tapeworm Echinococcus granulosus with a worldwide distribution. For CE, an effective drug treatment is not yet available. The present study was conducted to evaluate the efficacy of hMASP-2-based immunotherapy against hydatid cysts by using murine model. Eighteen weeks after infection with 2000 viable protoscoleces intraperitoneally, the infected mice were treated with hMASP-2 DNA nanolipoplexes (pcDNA3.1-hMASP-2) and albendazole respectively. After six weeks treatment, a significant reduction in the weight of cysts was observed both in the pcDNA3.1-hMASP-2 group and albendazole group compared with the untreated group (P < 0.05). The hMASP-2 DNA nanolipoplexes not only inhibited the development of germinal layer, but also induced the extensive degeneration and damage of the germinal layer cells. Furthermore, compared with the untreated group, the number of CD4+T cells and CD8+T cells and the level of serum IFN-γ were significantly increased (P < 0.05). The frequency of PD-1+T-cell subpopulations including CD4+PD-1+T cells and CD8+PD-1+T cells and the level of serum IL-4 were notably decreased (P < 0.05) in the pcDNA3.1-hMASP-2 treatment group. Therefore, the hMASP-2 DNA nanolipoplexes displayed an effective treatment for echinococcosis through inhibiting the development of cysts and up-regulatory T-cell immunity. This new hMASP-2-based immunotherapeutic strategy could be a potential alternative for the treatment of CE, but further studies are recommended to evaluate the full potential of these hMASP-2 DNA nanolipoplexes in the treatment of human CE.
Collapse
Affiliation(s)
- Chong Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Gao
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guochao Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoying Xu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhi Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianghua Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi He
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Sheng
- Department of Immunology, Medical College, Northwest Minzu University, Lanzhou, 730030, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Zhang H, Wei Y, Zhang F, Liu Y, Li Y, Li G, Han B, Wang H, Zhao W, Wang C. Polymorphisms of MASP2 gene and its relationship with mastitis and milk production in Chinese Holstein cattle. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1596755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Haiyan Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
- Dairy Cattle Research Center Shandong Academy of Agricultural Science, Jinan, Shandong Province, P. R. China
| | - Yan Wei
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Fengying Zhang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Yanyan Liu
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Yan Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Ge Li
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Bing Han
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Haifeng Wang
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Weitao Zhao
- Department of Biochemistry, Heze Medical College, Heze, Shandong Province, P. R. China
| | - Changfa Wang
- Dairy Cattle Research Center Shandong Academy of Agricultural Science, Jinan, Shandong Province, P. R. China
| |
Collapse
|