1
|
Marco-Bonilla M, Fresnadillo M, Largo R, Herrero-Beaumont G, Mediero A. Energy Regulation in Inflammatory Sarcopenia by the Purinergic System. Int J Mol Sci 2023; 24:16904. [PMID: 38069224 PMCID: PMC10706580 DOI: 10.3390/ijms242316904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The purinergic system has a dual role: the maintenance of energy balance and signaling within cells. Adenosine and adenosine triphosphate (ATP) are essential for maintaining these functions. Sarcopenia is characterized by alterations in the control of energy and signaling in favor of catabolic pathways. This review details the association between the purinergic system and muscle and adipose tissue homeostasis, discussing recent findings in the involvement of purinergic receptors in muscle wasting and advances in the use of the purinergic system as a novel therapeutic target in the management of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain; (M.M.-B.); (M.F.); (R.L.); (G.H.-B.)
| |
Collapse
|
2
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A 2B pathway. Sci Rep 2017; 7:44416. [PMID: 28294142 PMCID: PMC5353659 DOI: 10.1038/srep44416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors.
Collapse
|
4
|
Searl TJ, Dynda DI, Alanee SR, El-Zawahry AM, McVary KT, Silinsky EM. A1 Adenosine Receptor-Mediated Inhibition of Parasympathetic Neuromuscular Transmission in Human and Murine Urinary Bladder. J Pharmacol Exp Ther 2016; 356:116-22. [PMID: 26534943 PMCID: PMC4702072 DOI: 10.1124/jpet.115.228882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022] Open
Abstract
The potential role of A1 adenosine receptors in modulating neuromuscular transmission in the detrusor muscle of the urinary bladder has been tested in human and murine preparations with the intent to determine the viability of using adenosine receptor agonists as adjuncts to treat overactive bladder. In human detrusor muscle preparations, contractile responses to electrical field stimulation were inhibited by the selective A1 adenosine receptor agonists 2-chloro-N(6)-cyclopentyladenosine, N(6)-cyclopentyladenosine (CPA), and adenosine (rank order of potency: 2-chloro-N(6)-cyclopentyladenosine > CPA > adenosine). Pretreatment with 8-cyclopentyl-3-[3-[[4(fluorosulphonyl)benzoyl]oxy]propyl]-1-propylxanthine, an irreversible A1 antagonist, blocked the effects of CPA, thus confirming the role of A1 receptors in human detrusor preparations. In murine detrusor muscle preparations, contractions evoked by electrical field stimulation were reduced by CPA or adenosine. Amplitudes of the P2X purinoceptor-mediated excitatory junctional potentials (EJPs) recorded with intracellular microelectrodes were reduced in amplitude by CPA and adenosine with no effect on the spontaneous EJP amplitudes, confirming the prejunctional action of these agents. 8-Cyclopentyltheophylline, a selective A1 receptor antagonist, reversed the effects of CPA on EJP amplitudes with no effect of spontaneous EJPs, confirming the role of A1 receptors in mediating these effects.
Collapse
Affiliation(s)
- Timothy J Searl
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| | - Danuta I Dynda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| | - Shaheen R Alanee
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| | - Ahmed M El-Zawahry
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| | - Kevin T McVary
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| | - Eugene M Silinsky
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (T.J.S., E.M.S.); and Division of Urology, Southern Illinois University School of Medicine, Springfield, Illinois (D.I.D., S.R.A., A.M.E.-Z., K.T.M.)
| |
Collapse
|
5
|
Abstract
OBJECTIVES To characterise separately the pharmacological profiles of spontaneous contractions from the mucosa and detrusor layers of the bladder wall and to describe the relationship in mucosa between adenosine triphosphate (ATP) release and spontaneous contractions. MATERIALS AND METHODS Spontaneous contractions were measured (36 °C) from isolated mucosa or detrusor preparations, and intact (mucosa + detrusor) preparations from guinea-pig bladders. Potential modulators were added to the superfusate. The percentage of smooth muscle was measured in haematoxylin and eosin stained sections. ATP release was measured in superfusate samples from a fixed point above the preparation using a luciferin-luciferase assay. RESULTS The magnitude of spontaneous contractions was in the order intact >mucosa >detrusor. The percentage of smooth muscle was least in mucosa and greatest in detrusor preparations. The pharmacological profiles of spontaneous contractions were different in mucosa and detrusor in response to P2X or P2Y receptor agonists, adenosine and capsaicin. The intact preparations showed responses intermediate to those from mucosa and detrusor preparations. Low extracellular pH generated large changes in detrusor, but not mucosa preparations. The mucosa preparations released ATP in a cyclical manner, followed by variations in spontaneous contractions. ATP release was greater in mucosa compared with detrusor, augmented by carbachol and reversed by the M2 -selective antagonist, methoctramine. CONCLUSIONS The different pharmacological profiles of bladder mucosa and detrusor, implies different pathways for contractile activation. Also, the intermediate responses from intact preparations implies functional interaction. The temporal relationship between cyclical variation of ATP release and amplitude of spontaneous contractions is consistent with ATP release controlling spontaneous activity. Carbachol-mediated ATP release was independent of active contractile force.
Collapse
Affiliation(s)
- Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Christopher H Fry
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|