1
|
Gonzalez FN, Raticelli F, Ferrufino C, Fagúndez G, Rodriguez G, Miño S, Dus Santos MJ. Detection and characterization of Deformed Wing Virus (DWV) in apiaries with stationary and migratory management in the province of Entre Ríos, Argentina. Sci Rep 2024; 14:16747. [PMID: 39033233 PMCID: PMC11271310 DOI: 10.1038/s41598-024-67264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
In Argentina, migratory activity in search of floral diversity has become a common approach to maximizing honey production. The Entre Ríos province possesses a floral diversity that allows beekeepers to perform migratory or stationary management. Beyond the impact caused by transhumance, migratory colonies in this province start and end the season in monoculture areas. To study the effect of these practices on viral infection, we assayed for the presence, abundance and genetic characterization of the Deformed Wing Virus (DWV) in honey bees from apiaries with both types of management. In migratory apiaries, DWV was detectable in 86.2% of the colonies at the beginning of the season (September 2018), and 66% at the end of the season (March 2019). On the other hand, DWV was detected in 44.11% and 53.12% of stationary samples, at the beginning and the end of the season, respectively. Sequence analysis from migratory and stationary colonies revealed that all samples belonged to DWV-A type. The highest viral loads were detected in migratory samples collected in September. Higher DWV presence and abundance were associated with migratory management and the sampling time. Based on our findings we propose that the benefit of migration to wild flowering areas can be dissipated when the bee colonies end the season with monoculture.
Collapse
Affiliation(s)
- F N Gonzalez
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - F Raticelli
- Laboratorio de Especialidades Productivas de Maciá (LEPMA), Ecología y Medio Ambiente, Secretaría de Producción, Municipio de Gobernador Maciá, Entre Ríos, Argentina
| | - C Ferrufino
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - G Fagúndez
- Laboratorio de Actuopalinología, CICYTTP (CONICET - UADER), Diamante, Entre Ríos, Argentina
| | - G Rodriguez
- EEA Hilario Ascasubi, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 3, Km 794, Hilario Ascasubi, Buenos Aires, Argentina
| | - S Miño
- EEA Cerro Azul, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 14, Km 836, Cerro Azul, Misiones, Argentina
| | - M J Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Corona M, Branchiccela B, Alburaki M, Palmer-Young EC, Madella S, Chen Y, Evans JD. Decoupling the effects of nutrition, age, and behavioral caste on honey bee physiology, immunity, and colony health. Front Physiol 2023; 14:1149840. [PMID: 36994419 PMCID: PMC10040860 DOI: 10.3389/fphys.2023.1149840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Nutritional stress, especially a dearth of pollen, has been linked to honey bee colony losses. Colony-level experiments are critical for understanding the mechanisms by which nutritional stress affects individual honey bee physiology and pushes honey bee colonies to collapse. In this study, we investigated the impact of pollen restriction on key markers of honey bee physiology, main elements of the immune system, and predominant honey bee viruses. To achieve this objective, we uncoupled the effects of behavior, age, and nutritional conditions using a new colony establishment technique designed to control size, demography, and genetic background. Our results showed that the expression of storage proteins, including vitellogenin (vg) and royal jelly major protein 1 (mrjp1), were significantly associated with nursing, pollen ingestion, and older age. On the other hand, genes involved in hormonal regulation including insulin-like peptides (ilp1 and ilp2) and methyl farnesoate epoxidase (mfe), exhibited higher expression levels in young foragers from colonies not experiencing pollen restriction. In contrast, pollen restriction induced higher levels of insulin-like peptides in old nurses. On the other hand, we found a strong effect of behavior on the expression of all immune genes, with higher expression levels in foragers. In contrast, the effects of nutrition and age were significant only the expression of the regulatory gene dorsal. We also found multiple interactions of the experimental variables on viral titers, including higher Deformed wing virus (DWV) titers associated with foraging and age-related decline. In addition, nutrition significantly affected DWV titers in young nurses, with higher titers induced by pollen ingestion. In contrast, higher levels of Black queen cell virus (BQCV) were associated with pollen restriction. Finally, correlation, PCA, and NMDS analyses proved that behavior had had the strongest effect on gene expression and viral titers, followed by age and nutrition. These analyses also support multiple interactions among genes and virus analyzed, including negative correlations between the expression of genes encoding storage proteins associated with pollen ingestion and nursing (vg and mrjp1) with the expression of immune genes and DWV titers. Our results provide new insights into the proximal mechanisms by which nutritional stress is associated with changes in honey bee physiology, immunity, and viral titers.
Collapse
Affiliation(s)
- Miguel Corona
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Miguel Corona,
| | - Belen Branchiccela
- Sección Apicultura, Programa de Producción Familiar, Instituto Nacional de Investigación Agropecuaria (INIA) Colonia, Montevideo, Uruguay
| | - Mohamed Alburaki
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Evan C. Palmer-Young
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Shayne Madella
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Yanping Chen
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
3
|
Du H, Su W, Huang J, Ding G. Sex-Biased Expression of Olfaction-Related Genes in the Antennae of Apis cerana (Hymenoptera: Apidae). Genes (Basel) 2022; 13:genes13101771. [PMID: 36292656 PMCID: PMC9602017 DOI: 10.3390/genes13101771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
The olfactory system is essential for honeybees to adapt to complex and ever-changing environments and maintain cohesiveness. The Eastern honeybee Apis cerana is native to Asia and has a long history of managed beekeeping in China. In this study, we analysed the antennal transcriptomes of A. cerana workers and drones using Illumina sequencing. A total of 5262 differentially expressed genes (DEGs) (fold change > 2) were identified between these two castes, with 2359 upregulated and 2903 downregulated in drones compared with workers. We identified 242 candidate olfaction-related genes, including 15 odourant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), 110 odourant receptors (ORs), 9 gustatory receptors (GRs), 8 ionotropic receptors (IRs), 2 sensory neuron membrane proteins (SNMPs) and 93 putative odourant-degrading enzymes (ODEs). More olfaction-related genes have worker-biased expression than drone-biased expression, with 26 genes being highly expressed in workers’ antennae and only 8 genes being highly expressed in drones’ antennae (FPKM > 30). Using real-time quantitative PCR (RT-qPCR), we verified the reliability of differential genes inferred by transcriptomics and compared the expression profiles of 6 ORs (AcOR10, AcOR11, AcOR13, AcOR18, AcOR79 and AcOR170) between workers and drones. These ORs were expressed at significantly higher levels in the antennae than in other tissues (p < 0.01). There were clear variations in the expression levels of all 6 ORs between differently aged workers and drones. The relative expression levels of AcOR10, AcOR11, AcOR13, AcOR18 and AcOR79 reached a high peak in 15-day-old drones. These results will contribute to future research on the olfaction mechanism of A. cerana and will help to better reveal the odourant reception variations between different biological castes of honeybees.
Collapse
Affiliation(s)
- Hanchao Du
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenting Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Jiaxing Huang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guiling Ding
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: ; Tel.: +86-010-62596906
| |
Collapse
|
4
|
Abstract
Many species have separate haploid and diploid phases. Theory predicts that each phase should experience the effects of evolutionary forces (like selection) differently. In the haploid phase, all fitness-affecting alleles are exposed to selection, whereas in the diploid phase, those same alleles can be masked by homologous alleles. This predicts that selection acting on genes expressed in haploids should be more effective than diploid-biased genes. Unfortunately, in arrhenotokous species, this prediction can be confounded with the effects of sex-specific expression, as haploids are usually reproductive males. Theory posits that, when accounting for ploidal- and sex-specific expression, selection should be equally efficient on haploid- and diploid-biased genes relative to constitutive genes. Here, we used a multiomic approach in honey bees to quantify the evolutionary rates of haploid-biased genes and test the relative effects of sexual- and haploid-expression on molecular evolution. We found that 16% of the honey bee’s protein-coding genome is highly expressed in haploid tissue. When accounting for ploidy and sex, haploid- and diploid-biased genes evolve at a lower rate than expected, indicating that they experience strong negative selection. However, the rate of molecular evolution of haploid-biased genes was higher than diploid-based genes. Genes associated with sperm storage are a clear exception to this trend with evidence of strong positive selection. Our results provide an important empirical test of theory outlining how selection acts on genes expressed in arrhenotokous species. We propose the haploid life history stage affects genome-wide patterns of diversity and divergence because of both sexual and haploid selection.
Collapse
Affiliation(s)
| | - Amy L. Dapper
- Department of Biological Sciences, Mississippi State University, 219 Harned Hall, 295 Lee Blvd, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
5
|
Cardoso-Júnior CAM, Yagound B, Ronai I, Remnant EJ, Hartfelder K, Oldroyd BP. DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Mol Ecol 2021; 30:4804-4818. [PMID: 34322926 DOI: 10.1111/mec.16098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
The presence of DNA methylation marks within genic intervals, also called gene body methylation, is an evolutionarily-conserved epigenetic hallmark of animal and plant methylomes. In social insects, gene body methylation is thought to contribute to behavioural plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in the subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.
Collapse
Affiliation(s)
- Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil.,Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Isobel Ronai
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Emily J Remnant
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | - Benjamin P Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, Ecology and Evolution, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW, Australia.,Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
The microRNA miR-14 Regulates Egg-Laying by Targeting EcR in Honeybees ( Apis mellifera). INSECTS 2021; 12:insects12040351. [PMID: 33919981 PMCID: PMC8071020 DOI: 10.3390/insects12040351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Honeybees (Apis mellifera) are important pollinators and are commonly used for honey production. The oviposition behavior in honeybees is complex and errors in oviposition could affect the development of the bee colony. Recent studies reported that RNA-RNA cross-talk played a critical role in several biological processes, including reproduction. Ecdysone receptor (EcR) and miR-14 were previously reported to play important roles in egg-laying. Moreover, EcR was predicted to be the target gene of miR-14 and may form miR-14-EcR cross-talk. In this study, knocking down and overexpression of miR-14 and EcR in queen model were implemented. The effect of RNA expression of miR-14 and EcR on the number of eggs laid by honeybee queens were analyzed. Further, luciferase assay was used to confirm the target relation between miR-14 and 3'UTR of EcR. The results showed that the expression of miR-14 and EcR was associated with the number of eggs laid by queens. In specific, inhibition of miR-14 expression enhanced the number of eggs laid, while overexpression of EcR enhanced the number of eggs laid. Lastly, we determined that miR-14 directly targets the mRNA of EcR. These findings suggest that the cross-talk of miR-14-EcR plays an important role in the number of eggs laid by honeybee queens.
Collapse
|
8
|
The trophocytes and oenocytes of worker and queen honey bees (Apis mellifera) exhibit distinct age-associated transcriptome profiles. GeroScience 2021; 43:1863-1875. [PMID: 33826033 DOI: 10.1007/s11357-021-00360-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
Despite the identical genomic context, trophocytes and oenocytes in worker bees exhibit aging-related phenotypes, in contrast to the longevity phenotypes in queen bees. To explore this phenomenon at the molecular level, we evaluated the age-associated transcriptomes of trophocytes and oenocytes in worker bees and queen bees using high-throughput RNA-sequencing technology (RNA-seq). The results showed that (i) while gene expression profiles were different between worker and queen bees, they remained similar between young and old counterparts; (ii) worker bees express a high proportion of low-abundance genes, whereas queen bee transcriptomes display a high proportion of moderate-expression genes; (iii) genes were upregulated to a greater extent in queen bees vs. worker bees; and (iv) distinct aging-related and longevity-related candidate genes were found in worker and queen bees. These results provide new insights into the cellular aging and longevity of trophocytes and oenocytes in honey bees. Identification of aging-associated biomarker genes also constitutes a basis for translational research of aging in higher organisms.
Collapse
|
9
|
Kennedy A, Herman J, Rueppell O. Reproductive activation in honeybee ( Apis mellifera) workers protects against abiotic and biotic stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190737. [PMID: 33678021 DOI: 10.1098/rstb.2019.0737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Anissa Kennedy
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| |
Collapse
|
10
|
IRP30 promotes worker egg-laying in bumblebee, Bombus terrestris (Hymenoptera: Apidae). Gene 2021; 776:145446. [PMID: 33484761 DOI: 10.1016/j.gene.2021.145446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Bumblebees are important pollinators that have evolved between solitary and advanced eusocial insects. Compared with advanced honeybees, workers of social bumblebee species are prone to laying eggs during the competition phase, which leads to the end of the colony. Therefore, worker reproductive behavior has become a popular research topic for exploring various biological phenomena. Here, we demonstrate a novel reproduction-related function of an immune response protein-encoding gene (Immune Responsive Protein 30, IRP30) in Bombus terrestris by employing RNA interference (RNAi) and a transgenic Drosophila melanogaster system. The results show that worker egg-laying was significantly affected by IRP30 expression levels (P < 0.01). Compared with those in the dsGFP-treated groups, the first egg-laying time was delayed by 3.7 d and the egg number was decreased by 41% in the dsIRP30-treated group. In addition, the average size of the largest oocyte and the relative mRNA expression levels of Vg (vitellogenin) were significantly reduced in the dsIRP30-treated group (P < 0.05). Cellular localization by immunofluorescence demonstrated that IRP30 has important functions in the germ cells of workers' ovarioles. Overexpression of IRP30 was confirmed to increase the reproductive capability of the transgenic D. melanogaster. In conclusion, IRP30 regulates worker egg-laying by affecting the expression of Vg, the size of the ovary and the formation of the oocyte. These findings provide essential information for understanding the mechanisms underlying worker reproductive regulation.
Collapse
|
11
|
Collins DH, Wirén A, Labédan M, Smith M, Prince DC, Mohorianu I, Dalmay T, Bourke AFG. Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Mol Ecol 2021; 30:718-735. [PMID: 33238067 PMCID: PMC7898649 DOI: 10.1111/mec.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The queen‐worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally‐induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste‐associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen‐dependent period during which their caste fate as adults is determined followed by a nutrition‐sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA‐seq and qRT‐PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen‐dependent period. Relatively few novel (i.e., taxonomically‐restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late‐instar larvae in the worker pathway. We compared sets of caste‐associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste‐associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Anders Wirén
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marjorie Labédan
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Jeffrey Cheah Biomedical Centre, WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Guoth AW, Chernyshova AM, Thompson GJ. Gene-regulatory context of honey bee worker sterility. Biosystems 2020; 198:104235. [PMID: 32882324 DOI: 10.1016/j.biosystems.2020.104235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022]
Abstract
The highly organized societies of the Western honey bee Apis mellifera feature a highly reproductive queen at the center of attention and a large cohort of daughters that suppress their own reproduction to help rear more sisters, some of whom become queens themselves. This reproductive altruism is peculiar because in theory it evolves via indirect selection on genes for altruism that are expressed in the sterile workers but not in the reproductive queens. In this study we attempt to situate lists of genes previously implicated in queenright worker sterility into a broader regulatory framework. To do so we use a model bee brain transcriptional regulatory network as a template to infer how sets of genes responsive to ovary-suppressing queen pheromone are functionally interconnected over the model's topology. We predict that genes jointly involved in the regulation of worker sterility should be tightly networked, relative to genes whose functions are unrelated to each other. We find that sets of mapped genes - ranging in size from 17 to 250 - are well dispersed across the network's substructural scaffolds, suggesting that ovary de-activation involves genes that reside within more than one transcriptional regulatory module. For some sets, however, this dispersion is biased into certain areas of the network's substructure. Our analysis identifies the regions enriched for sterility genes and likewise identifies local hub genes that are presumably critical to subnetwork function. Our work offers a glimpse into the gene regulatory context of honey bee worker sterility and uses this context to identify new candidate gene targets for functional analysis. Finally, to the extent that any sterility-related modules identified here have evolved via selection for worker altruism, we can assume that this selection was indirect and of the type specifically invoked by inclusive fitness theory.
Collapse
Affiliation(s)
- Alex W Guoth
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada
| | - Anna M Chernyshova
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada
| | - Graham J Thompson
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
13
|
Chen X, Shi W, Chen C. Differential circular RNAs expression in ovary during oviposition in honey bees. Genomics 2019; 111:598-606. [DOI: 10.1016/j.ygeno.2018.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/10/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
|
14
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
15
|
Luna-Lucena D, Rabico F, Simoes ZL. Reproductive capacity and castes in eusocial stingless bees (Hymenoptera: Apidae). CURRENT OPINION IN INSECT SCIENCE 2019; 31:20-28. [PMID: 31109669 DOI: 10.1016/j.cois.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Eusocial lifestyle is one of the most important transitions in the evolutionary history of some groups of organisms. In bees, there are only two eusocial groups: the honey bees (Apini) and the stingless bees (Meliponini). Despite similarities on the eusocial lifestyles of these taxa, they present profound differences related to caste determination, development, behavior, and reproductive capacity of their members. In most of them the queen has a monopoly on reproduction. However, even though workers are tipically sterile, they can contribute to producing haploid eggs that generate males, or trophic eggs, used as an additional nutrition by the queen.
Collapse
Affiliation(s)
- Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Franciene Rabico
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Lp Simoes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
16
|
Christen V, Kunz PY, Fent K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1588-1601. [PMID: 30296754 DOI: 10.1016/j.envpol.2018.09.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Exposure to plant protection products (PPPs) is one of the causes for the population decline of pollinators. In addition to direct exposure, pollinators are exposed to PPPs by pollen, nectar and honey that often contain residues of multiple PPPs. While in legislation PPPs are regarded mainly for their acute toxicity in bees, other effects such as neurotoxicity, immunotoxicity, behavioural changes, stress responses and chronic effects that may harm different physiologically and ecologically relevant traits are much less or not regarded. Despite the fact that endocrine disruption by PPPs is among key effects weakening survival and thriving of populations, pollinators have been poorly investigated in this regard. Here we summarize known endocrine disruptive effects of PPPs in bees and compare them to other chronic effects. Endocrine disruption in honey bees comprise negative effects on reproductive success of queens and drones and behavioural transition of nurse bees to foragers. Among identified PPPs are insecticides, including neonicotinoids, fipronil, chlorantraniliprole and azadirachtin. So far, there exists no OECD guideline to investigate possible endocrine effects of PPPs. Admittedly, investigation of effects on reproduction success of queens and drones is rarely possible under laboratory conditions. But the behavioural transition of nurse bees to foragers could be a possible endpoint to analyse endocrine effects of PPPs under laboratory conditions. We identified some genes, including vitellogenin, which regulate this transition and which may be used as biomarkers for endocrine disruptive PPPs. We plea for a better implementation of the adverse outcome pathway concept into bee's research and propose a procedure for extending and complementing current assessments, including OECD guidelines, with additional physiological and molecular endpoints. Consequently, assessing potential endocrine disruption in pollinators should receive much more relevance.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Y Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, CH-3003, Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092, Zürich, Switzerland.
| |
Collapse
|
17
|
Lee CC, Wang J. Rapid Expansion of a Highly Germline-Expressed Mariner Element Acquired by Horizontal Transfer in the Fire Ant Genome. Genome Biol Evol 2018; 10:3262-3278. [PMID: 30304394 PMCID: PMC6307670 DOI: 10.1093/gbe/evy220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are present in almost all organisms and affect the host in various ways. TE activity can increase genomic variation and thereby affect host evolution. Currently active TEs are particularly interesting because they are likely generating new genomic diversity. These active TEs have been poorly studied outside of model organisms. In this study, we aimed to identify currently active TEs of a notorious invasive species, the red imported fire ant Solenopsis invicta. Using RNA profiling of male and female germline tissues, we found that the majority of TE-containing transcripts in the fire ant germline belong to the IS630-Tc1-Mariner superfamily. Subsequent genomic characterization of fire ant mariner content, molecular evolution analysis, and population comparisons revealed a highly expressed and highly polymorphic mariner element that is rapidly expanding in the fire ant genome. Additionally, using comparative genomics of multiple insect species we showed that this mariner has undergone several recent horizontal transfer events (<5.1 My). Our results document a rare case of a currently active TE originating from horizontal transfer.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Laboratory of Insect Ecology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Faragalla KM, Chernyshova AM, Gallo AJ, Thompson GJ. From gene list to gene network: Recognizing functional connections that regulate behavioral traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:317-329. [DOI: 10.1002/jez.b.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
19
|
Aumer D, Mumoki FN, Pirk CWW, Moritz RFA. The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis. Naturwissenschaften 2018; 105:22. [PMID: 29557991 DOI: 10.1007/s00114-018-1552-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.
Collapse
Affiliation(s)
- Denise Aumer
- Department of Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg 4, 06099, Halle (Saale), Germany.
| | - Fiona N Mumoki
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - Christian W W Pirk
- Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa
| | - Robin F A Moritz
- Department of Molecular Ecology, Martin-Luther University Halle-Wittenberg, Hoher Weg 4, 06099, Halle (Saale), Germany.,Social Insect Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0002, South Africa.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Peng L, Wang L, Yang YF, Zou MM, He WY, Wang Y, Wang Q, Vasseur L, You MS. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis. Gene 2017; 637:90-99. [PMID: 28916376 DOI: 10.1016/j.gene.2017.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/21/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. RESULTS Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. CONCLUSIONS Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest management.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fan Yang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Wu Y, Zheng H, Corona M, Pirk C, Meng F, Zheng Y, Hu F. Comparative transcriptome analysis on the synthesis pathway of honey bee (Apis mellifera) mandibular gland secretions. Sci Rep 2017; 7:4530. [PMID: 28674395 PMCID: PMC5495765 DOI: 10.1038/s41598-017-04879-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Secretions from mandibular glands (MGs) have important caste-specific functions that are associated with the social evolution of honey bees. To gain insights into the molecular architecture underlying these caste differences, we compared the gene expression patterns of MGs from queens, queenright workers (WQRs) and queenless workers (WQLs) using high-throughput RNA-sequencing technology. In total, we identified 46 candidate genes associated with caste-specific biosynthesis of fatty acid pheromones in the MG, including members of cytochrome P450 (CYP450) family and genes involved in fatty acid β-oxidation and ω-oxidation. For further identification of the CYP450s genes involved in the biosynthesis of MG secretions, we analyzed by means of qPCR, the expression levels of six of the CYP450 genes most abundantly expressed in the transcriptome analysis across different castes, ages, tasks and tissues. Our analysis revealed that CYP6AS8 and CYP6AS11, the most abundantly expressed CYP450 genes in worker and queen MGs, respectively, are selectively expressed in the MGs of workers and queens compared to other tissues. These results suggest that these genes might be responsible for the critical bifurcated hydroxylation process in the biosynthesis pathway. Our study contributes to the description of the molecular basis for the biosynthesis of fatty acid-derived pheromones in the MGs.
Collapse
Affiliation(s)
- YuQi Wu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - HuoQing Zheng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Miguel Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Christian Pirk
- Social Insect research Group, Department of Zoology and Entomology, University of Pretoria, 0002, Pretoria, South Africa
| | - Fei Meng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - YuFei Zheng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - FuLiang Hu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China.
| |
Collapse
|
22
|
Qiu J, He Y, Zhang J, Kang K, Li T, Zhang W. Discovery and functional identification of fecundity-related genes in the brown planthopper by large-scale RNA interference. INSECT MOLECULAR BIOLOGY 2016; 25:724-733. [PMID: 27472833 DOI: 10.1111/imb.12257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, transcriptome and proteome data have increasingly been used to identify potential novel genes related to insect phenotypes. However, there are few studies reporting the large-scale functional identification of such genes in insects. To identify novel genes related to fecundity in the brown planthopper (BPH), Nilaparvata lugens, 115 genes were selected from the transcriptomic and proteomic data previously obtained from high- and low-fecundity populations in our laboratory. The results of RNA interference (RNAi) feeding experiments showed that 91.21% of the genes were involved in the regulation of vitellogenin (Vg) expression and may influence BPH fecundity. After RNAi injection experiments, 12 annotated genes were confirmed as fecundity-related genes and three novel genes were identified in the BPH. Finally, C-terminal binding protein (CtBP) was shown to play an important role in BPH fecundity. Knockdown of CtBP not only led to lower survival, underdeveloped ovaries and fewer eggs laid but also resulted in a reduction in Vg protein expression. The novel gene resources gained from this study will be useful for constructing a Vg regulation network and may provide potential target genes for RNAi-based pest control.
Collapse
Affiliation(s)
- J Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Y He
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - J Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - K Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - T Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Lago DC, Humann FC, Barchuk AR, Abraham KJ, Hartfelder K. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:1-12. [PMID: 27720811 DOI: 10.1016/j.ibmb.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Fernanda Carvalho Humann
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Matão, Rua Estéfano D'avassi, 625, 15991-502 Matão, SP, Brazil.
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, 37130-000 Alfenas, MG, Brazil.
| | - Kuruvilla Joseph Abraham
- Departamento de Puericultura e Pediatria Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Universidade Estácio-Uniseb, Rua Abrahão Issa Halach 980, 14096-160 Ribeirão Preto, SP, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Salubrinal attenuates right ventricular hypertrophy and dysfunction in hypoxic pulmonary hypertension of rats. Vascul Pharmacol 2016; 87:190-198. [DOI: 10.1016/j.vph.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022]
|
25
|
Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris. Front Physiol 2016; 7:574. [PMID: 27932998 PMCID: PMC5121236 DOI: 10.3389/fphys.2016.00574] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/10/2016] [Indexed: 01/28/2023] Open
Abstract
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Ulrich R Ernst
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | | | - Robert Hanus
- Department of Chemistry of Social Insects, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| | - Irena Valterová
- Research Group of Infochemicals, The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Prague, Czechia
| |
Collapse
|
26
|
Ronai I, Oldroyd BP, Vergoz V. Queen pheromone regulates programmed cell death in the honey bee worker ovary. INSECT MOLECULAR BIOLOGY 2016; 25:646-652. [PMID: 27321063 DOI: 10.1111/imb.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue.
Collapse
Affiliation(s)
- I Ronai
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - V Vergoz
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Macedo LMF, Nunes FMF, Freitas FCP, Pires CV, Tanaka ED, Martins JR, Piulachs MD, Cristino AS, Pinheiro DG, Simões ZLP. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). INSECT MOLECULAR BIOLOGY 2016; 25:216-26. [PMID: 26853694 DOI: 10.1111/imb.12214] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Queen and worker honeybees differ profoundly in reproductive capacity. The queen of this complex society, with 200 highly active ovarioles in each ovary, is the fertile caste, whereas the workers have approximately 20 ovarioles as a result of receiving a different diet during larval development. In a regular queenright colony, the workers have inactive ovaries and do not reproduce. However, if the queen is sensed to be absent, some of the workers activate their ovaries, producing viable haploid eggs that develop into males. Here, a deep-sequenced ovary transcriptome library of reproductive workers was used as supporting data to assess the dynamic expression of the regulatory molecules and microRNAs (miRNAs) of reproductive and nonreproductive honeybee females. In this library, most of the differentially expressed miRNAs are related to ovary physiology or oogenesis. When we quantified the dynamic expression of 19 miRNAs in the active and inactive worker ovaries and compared their expression in the ovaries of virgin and mated queens, we noted that some miRNAs (miR-1, miR-31a, miR-13b, miR-125, let-7 RNA, miR-100, miR-276, miR-12, miR-263a, miR-306, miR-317, miR-92a and miR-9a) could be used to identify reproductive and nonreproductive statuses independent of caste. Furthermore, integrative gene networks suggested that some candidate miRNAs function in the process of ovary activation in worker bees.
Collapse
Affiliation(s)
- L M F Macedo
- Departamento De Genética, Faculdade De Medicina De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| | - F M F Nunes
- Departamento De Genética E Evolução, Centro De Ciências Biológicas E Da Saúde, Universidade Federal De São Carlos, São Carlos, Brazil
| | - F C P Freitas
- Departamento De Genética, Faculdade De Medicina De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| | - C V Pires
- Departamento De Genética, Faculdade De Medicina De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| | - E D Tanaka
- Departamento De Genética, Faculdade De Medicina De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| | - J R Martins
- Departamento De Genética, Faculdade De Medicina De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| | - M-D Piulachs
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - A S Cristino
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - D G Pinheiro
- Departamento De Tecnologia, Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista, Jaboticabal, Brazil
| | - Z L P Simões
- Departamento De Biologia, Faculdade De Filosofia, Ciências E Letras De Ribeirão Preto, Universidade De São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
Martins JR, Bitondi MMG. The HEX 110 Hexamerin Is a Cytoplasmic and Nucleolar Protein in the Ovaries of Apis mellifera. PLoS One 2016; 11:e0151035. [PMID: 26954256 PMCID: PMC4783013 DOI: 10.1371/journal.pone.0151035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/10/2016] [Indexed: 11/21/2022] Open
Abstract
Hexamerins are insect storage proteins abundantly secreted by the larval fat body into the haemolymph. The canonical role of hexamerins consists of serving as an amino acid reserve for development toward the adult stage. However, in Apis mellifera, immunofluorescence assays coupled to confocal laser-scanning microscopy, and high-throughput sequencing, have recently shown the presence of hexamerins in other organs than the fat body. These findings have led us to study these proteins with the expectation of uncovering additional functions in insect development. We show here that a honeybee hexamerin, HEX 110, localizes in the cytoplasm and nucleus of ovarian cells. In the nucleus of somatic and germline cells, HEX 110 colocalized with a nucleolar protein, fibrillarin, suggesting a structural or even regulatory function in the nucleolus. RNase A provoked the loss of HEX 110 signals in the ovarioles, indicating that the subcellular localization depends on RNA. This was reinforced by incubating ovaries with pyronin Y, a RNA-specific dye. Together, the colocalization with fibrillarin and pyronin Y, and the sensitivity to RNase, highlight unprecedented roles for HEX110 in the nucleolus, the nuclear structure harbouring the gene cluster involved in ribosomal RNA production. However, the similar patterns of HEX 110 foci distribution in the active and inactive ovaries of queens and workers preclude its association with the functional status of these organs.
Collapse
Affiliation(s)
- Juliana Ramos Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Ronai I, Oldroyd BP, Barton DA, Cabanes G, Lim J, Vergoz V. AnarchyIs a Molecular Signature of Worker Sterility in the Honey Bee. Mol Biol Evol 2015; 33:134-42. [DOI: 10.1093/molbev/msv202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|