1
|
Wang J, Liao S, Mao X, Lin H, Wei H, Chen H, Tang M. Function of doublesex and transformer-2 genes and its respond to environment factors in Dendroctonus armandi Tsai et Li (Coleoptera: Curculionidae: Scolytinae). Int J Biol Macromol 2025; 316:144508. [PMID: 40409646 DOI: 10.1016/j.ijbiomac.2025.144508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The doublesex (dsx) and transformer-2 (tra-2) genes play important roles in insect sex determination. However, the sex determination of Dendroctonus armandi in the native and coniferous forests of the Qinling Mountains is still unclear. In this study, we cloned and identified the full-length sequences of two Dadsx isoform (Dadsx1 and Dadsx2) and two isoform Datra-2 (Datra-2A and Datra-2B) in D. armandi. These four isoforms are expressed in larvae, pupae, as well as in males and females, and their expression levels are highest during the pupae stage. The relative expression levels of Dadsx and Datra-2 genes showed significant differences under different environment treatments (including temperature, nutrient, feeding duration, and terpenoid), with male Dadsx1 relative expression levels significantly higher than females and female Dadsx2 relative expression levels significantly higher than males. The silencing of Datra-2A and Datra-2B isoforms both leads to the downregulation of Dadsx1 isoform. Compared to the control group (average mortality rate: 36.7 %; average deformity rate: 0.2 %; emergence rate: 60.9 %; sex ratio: 1.11), when Dadsx1 (average mortality rate: 69.0 %; average deformity rate: 16.5 %; emergence rate: 29.6 %; sex ratio: 0.28), Dadsx2 (average mortality rate: 64.4 %; average deformity rate: 17.4 %; emergence rate: 25.4 %; sex ratio: 2.41), Datra-2A (average mortality rate: 65.1 %; average deformity rate: 16.1 %; emergence rate: 15.4 %; sex ratio: 0.31) and Datra-2B (average mortality rate: 65.4 %; average deformity rate: 17.2 %; emergence rate: 13.8 %; sex ratio: 0.33) isoform s were silenced, it showed a significant increase in mortality and deformity rates, a significant decrease in emergence rate, and a severe sex imbalance. The results indicate that the relative expression levels of Dadsx and Datra-2 genes are influenced by external factors and play a crucial role in maintaining the sex ratio of D. armandi and ensuring its lifecycle development.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Li C, Li CQ, Chen ZB, Liu BQ, Sun X, Wei KH, Li CY, Luan JB. Wolbachia symbionts control sex in a parasitoid wasp using a horizontally acquired gene. Curr Biol 2024; 34:2359-2372.e9. [PMID: 38692276 DOI: 10.1016/j.cub.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.
Collapse
Affiliation(s)
- Ce Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Kai-Heng Wei
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chen-Yi Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Fricke LC, Lindsey ARI. Identification of Parthenogenesis-Inducing Effector Proteins in Wolbachia. Genome Biol Evol 2024; 16:evae036. [PMID: 38530785 PMCID: PMC11019157 DOI: 10.1093/gbe/evae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 yr ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine-rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model Saccharomyces cerevisiae. We suggest that these proteins are parthenogenesis-inducing factors and our results indicate that this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
4
|
Fricke LC, Lindsey ARI. Identification of parthenogenesis-inducing effector proteins in Wolbachia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569668. [PMID: 38076953 PMCID: PMC10705499 DOI: 10.1101/2023.12.01.569668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Bacteria in the genus Wolbachia have evolved numerous strategies to manipulate arthropod sex, including the conversion of would-be male offspring to asexually reproducing females. This so-called "parthenogenesis-induction" phenotype can be found in a number of Wolbachia strains that infect arthropods with haplodiploid sex determination systems, including parasitoid wasps. Despite the discovery of microbe-mediated parthenogenesis more than 30 years ago, the underlying genetic mechanisms have remained elusive. We used a suite of genomic, computational, and molecular tools to identify and characterize two proteins that are uniquely found in parthenogenesis-inducing Wolbachia and have strong signatures of host-associated bacterial effector proteins. These putative parthenogenesis-inducing proteins have structural homology to eukaryotic protein domains including nucleoporins, the key insect sex-determining factor Transformer, and a eukaryotic-like serine-threonine kinase with leucine rich repeats. Furthermore, these proteins significantly impact eukaryotic cell biology in the model, Saccharomyces cerevisiae. We suggest these proteins are parthenogenesis-inducing factors and our results indicate this would be made possible by a novel mechanism of bacterial-host interaction.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| | - Amelia RI Lindsey
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
5
|
Verhulst EC, Pannebakker BA, Geuverink E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101023. [PMID: 36958587 DOI: 10.1016/j.cois.2023.101023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Endosymbionts are maternally transmitted, and therefore benefit from maximizing female offspring numbers. Parthenogenesis-induction (PI) is the most effective type of manipulation for transmission, but has solely been detected in haplodiploid species, whereas cytoplasmic incompatibility (CI) is detected frequently across the arthropod phylum, including haplodiploids. This puzzling observation led us to hypothesize that the molecular sex-determination mechanism of the haplodiploid host may be a constraining factor in the ability of endosymbionts to induce parthenogenesis. Recent insights indicate that PI-endosymbionts may be able to directly manipulate sex-determination genes to induce the necessary steps required for PI in haplodiploids. However, sex-determination cascades vary extensively, so PI-induction would require a specialized and host-dependent tool set. Contrastingly, CI-related genes target conserved cell-cycle mechanisms, are located on mobile elements, and spread easily. Finally, endosymbiont-manipulations may have a strong impact on the effectiveness of haplodiploid biocontrol agents, but can also be used to enhance their efficacy.
Collapse
Affiliation(s)
- Eveline C Verhulst
- Wageningen Univer sity & Research, Laboratory of Entomology, The Netherlands.
| | - Bart A Pannebakker
- Wageningen University & Research, Laboratory of Genetics, The Netherlands
| | - Elzemiek Geuverink
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), The Netherlands.
| |
Collapse
|
6
|
Identification of sex-specific splicing via comparative transcriptome analysis of gonads from sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101031. [PMID: 36371882 DOI: 10.1016/j.cbd.2022.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Alternative splicing (AS) is an essential post-transcriptional regulation mechanism for sex differentiation and gonadal development, which has rarely been reported in marine invertebrates. Sea cucumber (Apostichopus japonicus) is an economically important marine benthic echinoderm with a potential XX/XY sex determination mechanism, whose molecular mechanism in the gonadal differentiation has not been clearly understood. In this study, we analyzed available RNA-seq datasets of male and female gonads to explore if AS mechanism exerts an essential function in sex differentiation and gonadal development of A. japonicus. In our results, a total of 20,338 AS events from 7219 alternatively spliced genes, and 189 sexually differential alternative splicing (DAS) events from 156 genes were identified in gonadal transcriptome of sea cucumber. Gene Ontology analysis indicated that these DAS genes were significantly enriched in spermatogenesis-related GO terms. Maximal Clique Centrality (MCC) was then applied for protein-protein interaction (PPI) analysis to search for protein interactions and hub DAS gene. Among all DAS genes, we identified 10 DAS genes closely related to spermatogenesis and (or) sperm motility and a hub gene dnah1. Thus, this study revealed that alternative isoforms were generated from certain genes in female and male gonads through alternative splicing, which may provide direct evidence that alternative splicing mechanisms participate in female and male gonads. These results suggested a novel perspective for explaining the molecular mechanisms underlying gonadal differentiation between male and female sea cucumbers.
Collapse
|
7
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
8
|
Netschitailo O, Raub S, Kaftanoglu O, Beye M. Sexual diversification of splicing regulation during embryonic development in honeybees (Apis mellifera), A haplodiploid system. INSECT MOLECULAR BIOLOGY 2022; 31:170-176. [PMID: 34773317 DOI: 10.1111/imb.12748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The honeybee is a haplodiploid organism in which sexual development is determined by the complementary sex determiner (csd) gene and realized by sex-specific splicing processes involving the feminizer (fem) gene. We used high throughput transcriptome sequencing (RNA-Seq) to characterize the transcriptional differences between the sexes caused by the fertilization and sex determination processes in honeybee (Apis mellifera) embryos. We identified 758, 372 and 43 differentially expressed genes (DEGs) and 58, 176 and 233 differentially spliced genes (DSGs) in 10-15-h-old, 25-40-h-old and 55-70-h-old female and male embryos, respectively. The early difference in male and female embryos in response to the fertilization and non-fertilization processes resulted mainly in differential expression of genes (758 DEGs vs. 58 DSGs). In the latest sampled embryonic stage, the transcriptional differences between the sexes were dominated by alternative splicing of transcripts (43 DEGs vs. 233 DSGs). Interestingly, differentially spliced transcripts that encode RNA-binding properties were overrepresented in 55-70-h-old embryos, indicating a more diverse regulation via alternative splicing than previous work on the sex determination pathway suggested. These stage- and sex-specific transcriptome data from honeybee embryos provide a comprehensive resource for examining the roles of fertilization and sex determination in developmental programming in a haplodiploid system.
Collapse
Affiliation(s)
- Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Stephan Raub
- Center for Scientific Computing and Storage, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
9
|
Visser S, Voleníková A, Nguyen P, Verhulst EC, Marec F. A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella. PLoS Genet 2021; 17:e1009420. [PMID: 34339412 PMCID: PMC8360546 DOI: 10.1371/journal.pgen.1009420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/12/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Sex determination in the silkworm, Bombyx mori, is based on Feminizer (Fem), a W-linked Fem piRNA that triggers female development in WZ individuals, and the Z-linked Masculinizer (Masc), which initiates male development and dosage compensation in ZZ individuals. While Fem piRNA is missing in a close relative of B. mori, Masc determines sex in several representatives of distant lepidopteran lineages. We studied the molecular mechanisms of sex determination in the Mediterranean flour moth, Ephestia kuehniella (Pyralidae). We identified an E. kuehniella Masc ortholog, EkMasc, and its paralog resulting from a recent duplication, EkMascB. Both genes are located on the Z chromosome and encode a similar Masc protein that contains two conserved domains but has lost the conserved double zinc finger domain. We developed PCR-based genetic sexing and demonstrated a peak in the expression of EkMasc and EkMascB genes only in early male embryos. Simultaneous knock-down experiments of both EkMasc and EkMascB using RNAi during early embryogenesis led to a shift from male- to female-specific splicing of the E. kuehniella doublesex gene (Ekdsx), their downstream effector, in ZZ embryos and resulted in a strong female-biased sex-ratio. Our results thus confirmed the conserved role of EkMasc and/or EkMascB in masculinization. We suggest that the C-terminal proline-rich domain, we have identified in all functionally confirmed Masc proteins, in conjunction with the masculinizing domain, is important for transcriptional regulation of sex determination in Lepidoptera. The function of the Masc double zinc finger domain is still unknown, but appears to have been lost in E. kuehniella. The sex-determining cascade in the silkworm, Bombyx mori, differs greatly from those of other insects. In B. mori, female development is initiated by Fem piRNA expressed from the W chromosome during early embryogenesis. Fem piRNA silences Masculinizer (Masc) thereby blocking the male pathway resulting in female development. It is currently unknown whether this cascade is conserved across Lepidoptera. In the Mediterranean flour moth, Ephestia kuehniella, we identified an ortholog of Masc and discovered its functional duplication on the Z chromosome, which has not yet been found in any other lepidopteran species. We provide two lines of evidence that the EkMasc and/or EkMascB genes play an essential role in masculinization: (i) they show a peak of expression during early embryogenesis in ZZ but not in WZ embryos and (ii) their simultaneous silencing by RNAi results in female-specific splicing of the E. kuehniella doublesex gene (Ekdsx) in ZZ embryos and in a female-biased sex ratio. Our results suggest a conserved role of the duplicated Masc gene in sex determination of E. kuehniella.
Collapse
Affiliation(s)
- Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Voleníková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eveline C. Verhulst
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Ferguson KB, Pannebakker BA, Centurión A, van den Heuvel J, Nieuwenhuis R, Becker FFM, Schijlen E, Thiel A, Zwaan BJ, Verhulst EC. Bracon brevicornis Genome Showcases the Potential of Linked-Read Sequencing in Identifying a Putative Complementary Sex Determiner Gene. Genes (Basel) 2020; 11:E1390. [PMID: 33255162 PMCID: PMC7759789 DOI: 10.3390/genes11121390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/24/2023] Open
Abstract
Bracon brevicornis is an ectoparasitoid of a wide range of larval-stage Lepidopterans, including several pests of important crops, such as the corn borer, Ostrinia nubilalis. It is also one of the earliest documented cases of complementary sex determination in Hymenoptera. Here, we present the linked-read-based genome of B. brevicornis, complete with an ab initio-derived annotation and protein comparisons with fellow braconids, Fopius arisanus and Diachasma alloeum. We demonstrate the potential of linked-read assemblies in exploring regions of heterozygosity and search for structural and homology-derived evidence of the complementary sex determiner gene (csd).
Collapse
Affiliation(s)
- Kim B. Ferguson
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (B.A.P.); (J.v.d.H.); (F.F.M.B.); (B.J.Z.)
| | - Bart A. Pannebakker
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (B.A.P.); (J.v.d.H.); (F.F.M.B.); (B.J.Z.)
| | - Alejandra Centurión
- Population and Evolutionary Ecology Group, Institute of Ecology, FB02, University of Bremen, 28359 Bremen, Germany; (A.C.); (A.T.)
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (B.A.P.); (J.v.d.H.); (F.F.M.B.); (B.J.Z.)
| | - Ronald Nieuwenhuis
- Bioscience, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (R.N.); (E.S.)
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (B.A.P.); (J.v.d.H.); (F.F.M.B.); (B.J.Z.)
| | - Elio Schijlen
- Bioscience, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (R.N.); (E.S.)
| | - Andra Thiel
- Population and Evolutionary Ecology Group, Institute of Ecology, FB02, University of Bremen, 28359 Bremen, Germany; (A.C.); (A.T.)
| | - Bas J. Zwaan
- Laboratory of Genetics, Wageningen University & Research, 6708PB Wageningen, The Netherlands; (B.A.P.); (J.v.d.H.); (F.F.M.B.); (B.J.Z.)
| | - Eveline C. Verhulst
- Laboratory of Entomology, Wageningen University & Research, 6708PB Wageningen, The Netherlands;
| |
Collapse
|
11
|
Khan S, Sowpati DT, Srinivasan A, Soujanya M, Mishra RK. Long-Read Genome Sequencing and Assembly of Leptopilina boulardi: A Specialist Drosophila Parasitoid. G3 (BETHESDA, MD.) 2020; 10:1485-1494. [PMID: 32217632 PMCID: PMC7202025 DOI: 10.1534/g3.120.401151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptopilinaboulardi (Hymenoptera: Figitidae) is a specialist parasitoid of Drosophila The Drosophila-Leptopilina system has emerged as a suitable model for understanding several aspects of host-parasitoid biology. However, a good quality genome of the wasp counterpart was lacking. Here, we report a whole-genome assembly of L. boulardi to bring it in the scope of the applied and fundamental research on Drosophila parasitoids with access to epigenomics and genome editing tools. The 375Mb draft genome has an N50 of 275Kb with 6315 scaffolds >500bp and encompasses >95% complete BUSCOs. Using a combination of ab-initio and RNA-Seq based methods, 25259 protein-coding genes were predicted and 90% (22729) of them could be annotated with at least one function. We demonstrate the quality of the assembled genome by recapitulating the phylogenetic relationship of L. boulardi with other Hymenopterans. The key developmental regulators like Hox genes and sex determination genes are well conserved in L. boulardi, and so is the basic toolkit for epigenetic regulation. The search for epigenetic regulators has also revealed that L. boulardi genome possesses DNMT1 (maintenance DNA methyltransferase), DNMT2 (tRNA methyltransferase) but lacks the de novo DNA methyltransferase (DNMT3). Also, the heterochromatin protein 1 family appears to have expanded as compared to other hymenopterans. The draft genome of L. boulardi (Lb17) will expedite the research on Drosophila parasitoids. This genome resource and early indication of epigenetic aspects in its specialization make it an interesting system to address a variety of questions on host-parasitoid biology.
Collapse
Affiliation(s)
- Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Divya Tej Sowpati
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Arumugam Srinivasan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Mamilla Soujanya
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad - 500007, Telangana, India
| |
Collapse
|
12
|
Nguantad S, Chumnanpuen P, Thancharoen A, Vongsangnak W, Sriboonlert A. Identification of potential candidate genes involved in the sex determination cascade in an aquatic firefly, Sclerotia aquatilis (Coleoptera, Lampyridae). Genomics 2020; 112:2590-2602. [PMID: 32061895 DOI: 10.1016/j.ygeno.2020.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Sexual differentiation, dimorphism, and courtship behavior are the downstream developmental programs of the sex determination cascade. The sex determination cascade in arthropods often involves key genes, transformer (tra), doublesex (dsx), transformer-2 (tra2), and fruitless (fru). These genes are conserved among insect taxa; however, they have never been reported in fireflies. In this study, the candidate genes for these key genes were identified for the first time in an aquatic firefly, Sclerotia aquatilis using transcriptome analysis. A comparative protein-protein interaction (PPI) network of sex determination cascade was reconstructed for S. aquatilis based on a network of a model insect, Drosophila melanogaster. Subsequently, a sex determination cascade in S. aquatilis was proposed based on the amino acid sequence structures and expression profiles of these candidates. This study describes the first efforts toward understanding the molecular control of sex determination cascade in fireflies.
Collapse
Affiliation(s)
- Sarintip Nguantad
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Anchana Thancharoen
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| | - Ajaraporn Sriboonlert
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|