1
|
Zhang C, He L, Ding B, Yang H. Identification and functional characterization of the chitinase and chitinase-like gene family in Myzus persicae (Sulzer) during molting. PEST MANAGEMENT SCIENCE 2025; 81:327-339. [PMID: 39319496 DOI: 10.1002/ps.8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The crucial role of insect chitinase in molting, pupation, and emergence renders it a promising target for pest control strategies. Despite the extensive investigation of chitinase genes in various pests, there is still a lack of systematic identification and functional analysis related to aphid chitinase. RESULTS We systematically identified a total of nine chitinase/chitinase-like genes and one ENGase gene, which included eight Cht genes, one IDGF gene, and one ENGase gene. Through phylogenetic analysis, the chitinase proteins were classified into nine distinct groups (I, II, III, V, VI, VIII, X, other, and ENGase). The expression profile revealed that the epidermis exhibited relatively high expression levels for three chitinase genes: MpCht5, MpCht7, and MpCht10. Furthermore, transcriptional levels of nine chitinase genes were up-regulated following treatment with 20-hydroxyecdysone (20E) hormone. Silencing MpCht3, MpCht5, MpCht7, MpCht10, and MpCht11-2 via RNA interference (RNAi) during the molting stage resulted in nymph shrinking, hindering normal molting and leading to death. Additionally, it was observed that silencing of MpIDGF induced the body color of the aphids to change from reddish brown to colorless after molting, culminating in eventual mortality. CONCLUSION Our findings suggest that chitinase/chitinase-like genes play a crucial role in the molting process of Myzus persicae. Utilizing RNAi technology, we aimed to elucidate the precise function of MpCht genes in the molting mechanism of M. persicae, this discovery establishes a significant theoretical foundation for future research on aphid control, with chitinase as the target. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Li He
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Forestry Development Centre, Zhenfeng County Forestry Bureau, Southwest Guizhou Buyi and Miao Autonomous Prefecture, Guizhou, P. R. China
| | - Bo Ding
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| |
Collapse
|
2
|
Zhang YX, Wu YK, Liu HH, Li WZ, Jin L, Li GQ. Comparative Transcriptome Analysis of Henosepilachna vigintioctomaculata Reveals Critical Pathways during Development. Int J Mol Sci 2024; 25:7505. [PMID: 39062748 PMCID: PMC11276636 DOI: 10.3390/ijms25147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Henosepilachna vigintioctomaculata is distributed in several Asian countries. The larvae and adults often cause substantial economic losses to Solanaceae crops such as potato, tomato, eggplant, and Chinese boxthorn. Even though a chromosome-level genome has been documented, the expression profiles of genes involved in development are not determined. In this study, we constructed embryonic, larval, pupal, and adult transcriptomes, generated a comprehensive RNA-sequencing dataset including ~52 Gb of clean data, and identified 602,773,686 cleaned reads and 33,269 unigenes. A total of 18,192 unigenes were successfully annotated against NCBI nonredundant protein sequences, Swissprot, Eukaryotic Orthologous Groups, Gene Ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. There were 3580, 2040, 5160, 2496, 3008, and 3895 differentially expressed genes (DEGs) between adult/egg, egg/larval, larval/pupal, adult/pupal, egg/pupal, and adult/larval samples, respectively. GO and KEGG analyses of the DEGs highlighted several critical pathways associated with specific developing stages. This is the first comprehensive transcriptomic dataset encompassing all developmental stages in H. vigintioctomaculata. Our data may facilitate the exploitation of gene targets for pest control and can serve as a valuable gene resource for future molecular investigations.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210000, China; (Y.-X.Z.); (Y.-K.W.); (H.-H.L.); (W.-Z.L.); (L.J.)
| |
Collapse
|
3
|
Chen Y, Tang H, Zhou W, Li C, Chen YN, Zhang Q, Fu KY, Guo WC, Shi JF. Identification of chitinase genes and roles in the larval-pupal transition of Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2024; 80:282-295. [PMID: 37671631 DOI: 10.1002/ps.7754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Insect chitinases play crucial roles in degrading chitin in the extracellular matrix, affecting insect development and molting. However, our understanding of the specific functions of various chitinases in Leptinotarsa decemlineata is limited, hindering the deployment of novel gene-targeting technologies as pest management strategies. RESULTS We identified and characterized 19 full-length complementary DNA (cDNA) sequences of chitinase genes (LdChts) in Leptinotarsa decemlineata. Despite having varying domain architectures, all these chitinases contained at least one chitinase catalytic domain. Phylogenetic analysis classified the chitinase proteins into ten distinct clusters (groups I-X). Expression profiles showed the highest expression in chitin-rich tissues or during specific developmental stages from the larva-to-pupa transition. Gene-specific RNA interference (RNAi) experiments provided valuable insight into chitinase gene function. Silencing of group II LdCht10 prevented larval-larval molting, larval-prepupal, and prepupal-pupal processes. Moreover, our study revealed that LdCht5, LdCht2, LdCht11, LdCht1, and LdCht3 from groups I and VII-X were specifically essential for the transition from prepupal to pupal stage, whereas LdIDGF2 from group V was necessary for the larval-prepupal metamorphic process. The chitinase gene LdCht7 from group III and LdIDGF4 from group V were involved in both the larva-to-prepupa and the prepupa-to-pupa shift. Additionally, our findings also shed light on the exclusive expression of nine chitinase genes within group IV in the digestive system, suggesting their potential role in regulating larval body weight and larva-to-pupa transition. CONCLUSION Our results provide a comprehensive understanding of the functional specialization of chitinase genes during the molting process of various stages and identify potential targets for RNAi-based management of Leptinotarsa decemlineata. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Tang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Chang Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Yi-Nan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| | - Kai-Yun Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ji-Feng Shi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Wang X, Ding X, Yuan Z, Jia Z, Fu K, Zhan F, Guo W, Zhou L, Li H, Dai J, Wang Z, Xie Y, Yang X. Analysis of the virulence, infection process, and extracellular enzyme activities of Aspergillus nomius against the Asian corn borer, Ostrinia furnacalis guenée (Lepidoptera: Crambidae). Virulence 2023; 14:2265108. [PMID: 37941402 PMCID: PMC10653701 DOI: 10.1080/21505594.2023.2265108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
The control of Ostrinia furnacalis, a major pest of maize in Xinjiang, is challenging owing to the occurrence of resistant individuals. Entomopathogenic fungi (EPF) are natural insect regulators used as substitutes for synthetic chemical insecticides. The fungus Aspergillus nomius is highly pathogenic to O. furnacalis; however, its virulence characteristics have not been identified. This study aimed to analyse the lethal efficacy, mode of infection on the cuticle, and extracellular enzyme activity of A. nomius against O. furnacalis. We found that the mortality and mycosis of O. furnacalis were dose-dependent when exposed to A. nomius and varied at different life stages. The egg-hatching and adult emergence rates decreased with an increase in conidial suspension. The highest mortality (83.33%, 7 d post-infection [DPI]) and mycosis (74.33%, 7 DPI) and the lowest mortality response (8.52 × 103 conidia mL-1) and median lethal time (4.91 d) occurred in the 3rd instar larvae of O. furnacalis. Scanning electron microscopy indicated that numerous conidia germination and infection structure formation may have contributed to the high pathogenicity of A. nomius against O. furnacalis. There were significant correlations between O. furnacalis mortality and the activities of extracellular protease, lipase, and chitinase of A. nomius. This study revealed the infection process of the highly pathogenic A. nomius against O. furnacalis, providing a theoretical basis and reference for strain improvement and field application of EPF.
Collapse
Affiliation(s)
- Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
| | - Xinhua Ding
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Zihan Yuan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Zunzun Jia
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Kaiyun Fu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Faqiang Zhan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Wenchao Guo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Haiqiang Li
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture, Ürümqi, PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Jinping Dai
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Ürümqi, PR China
| |
Collapse
|
5
|
Liu XY, Wang SS, Zhong F, Zhou M, Jiang XY, Cheng YS, Dan YH, Hu G, Li C, Tang B, Wu Y. Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front Physiol 2022; 13:1034926. [PMID: 36262255 PMCID: PMC9574123 DOI: 10.3389/fphys.2022.1034926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the main component of insect exoskeleton and midgut peritrophic membrane. Insect molting is the result of the balance and coordination of chitin synthesis and degradation in chitin metabolism under the action of hormones. In this study, a 678 bp dsRNA fragment was designed and synthesized according to the known CHI (Chitinase) sequence of Spodoptera frugiperda. It was injected into the larvae to observe the molting and development of S. frugiperda. At the same time, the activities of trehalase and chitinase, the contents of trehalose, chitin and other substances were detected, and the expression of related genes in the chitin synthesis pathway was determined. The results showed that CHI gene was highly expressed at the end of each instar, prepupa and pupal stage before molting; At 12 and 24 h after dsRNA injection of CHI gene of S. frugiperda, the expression of CHI gene decreased significantly, and the chitinase activity decreased significantly from 12 to 48 h. The expression of chitin synthase (CHSB) gene decreased significantly, and the chitin content increased significantly. Some larvae could not molt normally and complete development, leading to certain mortality. Secondly, after RNAi of CHI gene, the content of glucose and glycogen increased first and then decreased, while the content of trehalose decreased significantly or showed a downward trend. The activities of the two types of trehalase and the expression levels of trehalase genes decreased first and then increased, especially the trehalase activities increased significantly at 48 h after dsCHI injection. And trehalose-6-phosphate synthase (TPS), glutamine: fructose-6-phosphate amidotransferase (GFAT), UDP-N-acetylglucosamine pyrophosphorylases (UAP), hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and phosphoacetylglucosamine mutase (PAGM) all decreased significantly at 24 h, and then increased or significantly increased at 48 h. These results indicated that when the expression of chitinase gene of S. frugiperda was inhibited, it affected the degradation of chitin in the old epidermis and the formation of new epidermis, and the content of chitin increased, which led to the failure of larvae to molt normally. Moreover, the chitin synthesis pathway and trehalose metabolism were also regulated. The relevant results provide a theoretical basis for screening target genes and developing green insecticides to control pests by using the chitin metabolism pathway.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Sha-Sha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Xin-Yi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi-Sha Cheng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yi-Hao Dan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- *Correspondence: Yan Wu,
| |
Collapse
|
6
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
7
|
Wu ZZ, Zhang WY, Lin YZ, Li DQ, Shu BS, Lin JT. Genome-wide identification, characterization and functional analysis of the chitianse and chitinase-like gene family in Diaphorina citri. PEST MANAGEMENT SCIENCE 2022; 78:1740-1748. [PMID: 34997800 DOI: 10.1002/ps.6793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/14/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insect chitinases play vital roles in postembryonic development, especially during the molting process, and are potential targets for the RNA interference (RNAi)-based insecticidal strategy. Systematic functional analyses of chitinase genes have already been conducted on numerous insect pests, but similar analyses have not been carried out on Diaphorina citri. RESULTS Eleven chitinase/chitinase-like genes and one endo-β-N-acetylglucosaminidase (ENGase) gene were identified in the Diaphorina citri genome using various bioinformatic tools. Transcriptomes of the integument and midgut from fifth-instar nymphs and freshly-emerged adults of Diaphorina citri were generated and sequenced. Potential functions of 12 chitinase/chitinase-like genes were examined during nymph-adult transitions. Four chitinase genes, including DcCht5, DcCht7, DcCht10-1 and DcCht10-2, were mainly expressed in the integument of fifth-instar nymphs. These four genes were also up-regulated significantly under 20-hydroxyecdysone (20E) treatments. RNAi-mediated knockdown of these four genes suggests that they are essential for nymph-adult transition. CONCLUSION Our results demonstrated essential roles of the chitinase/chitinase-like genes during the nymph-adult transition in Diaphorina citri, which are potentially useful targets for controlling the Diaphorina citri pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Wan-Ying Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Yi-Zhu Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Da-Qi Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, P. R. China
| | - Ben-Shui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
8
|
The Role of Chitooligosaccharidolytic β- N-Acetylglucosamindase in the Molting and Wing Development of the Silkworm Bombyx mori. Int J Mol Sci 2022; 23:ijms23073850. [PMID: 35409210 PMCID: PMC8998872 DOI: 10.3390/ijms23073850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
The insect glycoside hydrolase family 20 β-N-acetylhexosaminidases (HEXs) are key enzymes involved in chitin degradation. In this study, nine HEX genes in Bombyx mori were identified by genome-wide analysis. Bioinformatic analysis based on the transcriptome database indicated that each gene had a distinct expression pattern. qRT-PCR was performed to detect the expression pattern of the chitooligosaccharidolytic β-N-acetylglucosaminidase (BmChiNAG). BmChiNAG was highly expressed in chitin-rich tissues, such as the epidermis. In the wing disc and epidermis, BmChiNAG has the highest expression level during the wandering stage. CRISPR/Cas9-mediated BmChiNAG deletion was used to study the function. In the BmChiNAG-knockout line, 39.2% of female heterozygotes had small and curly wings. The ultrastructure of a cross-section showed that the lack of BmChiNAG affected the stratification of the wing membrane and the formation of the correct wing vein structure. The molting process of the homozygotes was severely hindered during the larva to pupa transition. Epidermal sections showed that the endocuticle of the pupa was not degraded in the mutant. These results indicate that BmChiNAG is involved in chitin catabolism and plays an important role in the molting and wing development of the silkworm, which highlights the potential of BmChiNAG as a pest control target.
Collapse
|
9
|
Wan XS, Shi MR, Xu J, Liu JH, Ye H. Interference Efficiency and Effects of Bacterium-mediated RNAi in the Fall Armyworm (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6377270. [PMID: 34581410 PMCID: PMC8477382 DOI: 10.1093/jisesa/ieab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 05/10/2023]
Abstract
RNAi is an effective tool for gene function analysis and a promising strategy to provide environmentally friendly control approaches for pathogens and pests. Recent studies support the utility of bacterium-mediated RNAi as a cost-effective method for gene function study and a suitable externally applied delivery mechanism for pest control. Here, we developed a bacterium-mediated RNAi system in Spodoptera frugiperda based on four target genes, specifically, Chitinase (Sf-CHI), Chitin synthase B (Sf-CHSB), Sugar transporter SWEET1 (Sf-ST), and Hemolin (Sf-HEM). RNAi conducted by feeding larvae with bacteria expressing dsRNAs of target genes or injecting pupae and adults with bacterially synthesized dsRNA induced silencing of target genes and resulted in significant negative effects on growth and survival of S. frugiperda. However, RNAi efficiency and effects were variable among different target genes and dsRNA delivery methods. Injection of pupae with dsCHI and dsCHSB induced a significant increase in wing malformation in adults, suggesting that precise regulation of chitin digestion and synthesis is crucial during wing formation. Injection of female moths with dsHEM resulted in lower mating, fecundity, and egg hatching, signifying a critical role of Sf-HEM in the process of egg production and/or embryo development. Our collective results demonstrate that bacterium-mediated RNAi presents an alternative technique for gene function study in S. frugiperda and a potentially effective strategy for control of this pest, and that Sf-CHI, Sf-CHSB, Sf-ST, and Sf-HEM encoding genes can be potent targets.
Collapse
Affiliation(s)
- Xiao-Shuang Wan
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Corresponding authors, e-mail: ;
| | - Jian-Hong Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Corresponding authors, e-mail: ;
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| |
Collapse
|
10
|
Yang X, Zhou C, Long G, Yang H, Chen C, Jin D. Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. INSECT SCIENCE 2021; 28:901-916. [PMID: 32536018 DOI: 10.1111/1744-7917.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Chitinase degrades chitin in the old epidermis or peritrophic matrix of insects, which ensures normal development and metamorphosis. In our previous work, we comprehensively studied the function of SfCht7 in Sogatella furcifera. However, the number and function of chitinase genes in S. furcifera remain unknown. Here, we identified 12 full-length chitinase transcripts from S. furcifera, which included nine chitinase (Cht), two imaginal disc growth factor (IDGF), and one endo-β-N-acetylglucosaminidase (ENGase) genes. Expression analysis results revealed that the expression levels of eight genes (SfCht3, SfCht5, SfCht6-1, SfCht6-2, SfCht7, SfCht8, SfCht10, and SfIDGF2) with similar transcript levels peaked prior to molting of each nymph and were highly expressed in the integument. Based on RNA interference (RNAi), description of the functions of each chitinase gene indicated that the silencing of SfCht5, SfCht10, and SfIDGF2 led to molting defects and lethality. RNAi inhibited the expressions of SfCht5, SfCht7, SfCht10, and SfIDGF2, which led to downregulated expressions of chitin synthase 1 (SfCHS1, SfCHS1a, and SfCHS1b) and four chitin deacetylase genes (SfCDA1, SfCDA2, SfCDA3, and SfCDA4), and caused a change in the expression level of two trehalase genes (TRE1 and TRE2). Furthermore, silencing of SfCht7 induced a significant decrease in the expression levels of three wing development-related genes (SfWG, SfDpp, and SfHh). In conclusion, SfCht5, SfCht7, SfCht10, and SfIDGF2 play vital roles in nymph-adult transition and are involved in the regulation of chitin metabolism, and SfCht7 is also involved in wing development; therefore, these genes are potential targets for control of S. furcifera.
Collapse
Affiliation(s)
- Xibin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guiyun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Chen Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guiyang, China
| |
Collapse
|
11
|
Zhu M, Lu S, Zhuang M, Zhang Y, Lv H, Ji J, Hou X, Fang Z, Wang Y, Yang L. Genome-wide identification and expression analysis of the Brassica oleracea L. chitin-binding genes and response to pathogens infections. PLANTA 2021; 253:80. [PMID: 33742226 PMCID: PMC7979657 DOI: 10.1007/s00425-021-03596-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Chitinase family genes were involved in the response of Brassica oleracea to Fusarium wilt, powdery mildew, black spot and downy mildew. Abstract Chitinase, a category of pathogenesis-related proteins, is believed to play an important role in defending against external stress in plants. However, a comprehensive analysis of the chitin-binding gene family has not been reported to date in cabbage (Brassica oleracea L.), especially regarding the roles that chitinases play in response to various diseases. In this study, a total of 20 chitinase genes were identified using a genome-wide search method. Phylogenetic analysis was employed to classify these genes into two groups. The genes were distributed unevenly across six chromosomes in cabbage, and all of them contained few introns (≤ 2). The results of collinear analysis showed that the cabbage genome contained 1-5 copies of each chitinase gene (excluding Bol035470) identified in Arabidopsis. The heatmap of the chitinase gene family showed that these genes were expressed in various tissues and organs. Two genes (Bol023322 and Bol041024) were relatively highly expressed in all of the investigated tissues under normal conditions, exhibiting the expression characteristics of housekeeping genes. In addition, under four different stresses, namely, Fusarium wilt, powdery mildew, black spot and downy mildew, we detected 9, 5, 8 and 8 genes with different expression levels in different treatments, respectively. Our results may help to elucidate the roles played by chitinases in the responses of host plants to various diseases.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Shujin Lu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
12
|
Liu SH, Xia YD, Zhang Q, Li W, Li RY, Liu Y, Chen EH, Dou W, Stelinski LL, Wang JJ. Potential targets for controlling Bactrocera dorsalis using cuticle- and hormone-related genes revealed by a developmental transcriptome analysis. PEST MANAGEMENT SCIENCE 2020; 76:2127-2143. [PMID: 31951094 DOI: 10.1002/ps.5751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying-Dan Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Run-Yan Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
14
|
Zhu B, Shan J, Li R, Liang P, Gao X. Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. PEST MANAGEMENT SCIENCE 2019; 75:1951-1961. [PMID: 30578597 DOI: 10.1002/ps.5308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Insect chitinases play a vital part in chitin degradation in exoskeletons and gut linings during the molting process, and therefore are considered potential targets for new insecticide designs or RNA interference (RNAi)-based pest management. Systematic functional analysis of chitinase genes has already been conducted in several insect pests, but not Plutella xylostella. RESULTS In this study, 13 full-length chitinase transcripts were obtained in P. xylostella. Developmental and tissue-specific expression pattern analysis revealed that seven chitinase transcripts were periodically expressed during molting stage and mainly expressed in the integument or midgut, including PxCht3, PxCht5, PxCht6-2, PxCht7, PxCht8, PxCht10 and PxCht-h. RNAi-mediated knockdown of these specific expressed genes revealed that PxCht5 and PxCht10 were essential in larval molting, pupation and eclosion, and PxCht7 was indispensable only in eclosion. No significant effects were observed on insect survival or normal development when the rest chitinase transcripts were suppressed by RNAi. CONCLUSION Our results indicated the function of P. xylostella chitinase family genes during the molting process, and may provide potential targets for RNAi-based management of P. xylostella. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jinqiong Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ran Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|