1
|
Usama M, Hsu YC, Safaei M, Chen CY, Han KH, Ho YS, Yamaguchi H, Li YC, Hung MC, Wong CH, Lin CW. Antibody-drug conjugates targeting SSEA-4 inhibits growth and migration of SSEA-4 positive breast cancer cells. Cancer Lett 2025; 611:217453. [PMID: 39798832 DOI: 10.1016/j.canlet.2025.217453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Although breast cancer treatment has evolved significantly in recent years, drug resistance remains a major challenge. To identify new targets for breast cancer, we found that stage-specific embryonic antigen 4 (SSEA-4) is expressed in all subtypes of breast cancer cell lines, and the increased expression of the associated enzymes β3GalT5 and ST3Gal2 correlates with poor recurrence-free survival (RFS) in breast cancer. We also found that SSEA-4 antibodies can be rapidly internalized into breast cancer cells, a property that makes SSEA-4 an attractive target for antibody-drug conjugates (ADCs). Furthermore, the SSEA-4 antibody conjugated to the anticancer agents showed efficacy against SSEA-4-positive breast cancer cells, including those resistant to PARP inhibitor, trastuzumab, and CDK7 inhibitor. In addition, SSEA-4 ADCs showed no efficacy in β3GalT5-knockout MDA-MB-231 cells, highlighting the essential role of SSEA-4 as the target antigen for ADCs activity. Our work shows that SSEA-4-ADCs could be a therapeutic option for breast cancers.
Collapse
Affiliation(s)
- Muhammad Usama
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Yu-Chieh Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Mahdieh Safaei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, 34054, Daejeon, Republic of Korea
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Cell Biology, China Medical University, Taichung, 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chih-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
2
|
Hung TH, Huang Y, Yeh CT, Yeh CN, Yu J, Lin CC, Chiou SP, Chiang PY, Hung JT, Yu AL. High expression of embryonic stem cell marker SSEA3 confers poor prognosis and promotes epithelial mesenchymal transition in hepatocellular carcinoma. Biomed J 2024; 47:100612. [PMID: 37290529 PMCID: PMC10972813 DOI: 10.1016/j.bj.2023.100612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Malignant cells may arise from dedifferentiation of mature cells and acquire features of the progenitor cells. Definitive endoderm from which liver is derived, expresses glycosphingolipids (GSLs) such as stage-specific embryonic antigen 3 (SSEA3), Globo H, and stage-specific embryonic antigen 4 (SSEA4). Herein, we evaluated the potential prognosis value of the three GSLs and biological functions of SSEA3 in hepatocellular carcinoma (HCC). METHODS The expression of SSEA3, Globo H, and SSEA4 in tumor tissues obtained from 328 patients with resectable HCC was examined by immunohistochemistry staining. Epithelial mesenchymal transition (EMT) and their related genes were analyzed by transwell assay and qRT-PCR, respectively. RESULTS Kaplan Meier survival analysis showed significantly shorter relapse-free survival (RFS) for those with higher expression of SSEA3 (p < 0.001), Globo H (p < 0.001), and SSEA4 (p = 0.005) and worse overall survival (OS) for those with high expression of either SSEA3 (p < 0.001) or SSEA4 (p = 0.01). Furthermore, multivariable Cox regression analysis identified the SSEA3 as an independent predictor for RFS (HR: 2.68, 95% CI: 1.93-3.72, p < 0.001) and OS (HR: 2.99, 95% CI: 1.81-4.96, p < 0.001) in HCC. Additionally, SSEA3-ceramide enhanced the EMT of HCC cells, as reflected by its ability to increase migration, invasion and upregulate the expression of CDH2, vimentin, fibronectin, and MMP2, along with ZEB1. Moreover, ZEB1 silencing abrogated the EMT-enhancing effects of SSEA3-ceramide. CONCLUSIONS Higher expression of SSEA3 was an independent predictor for RFS and OS in HCC and promoted EMT of HCC via upregulation of ZEB1.
Collapse
Affiliation(s)
- Tsai-Hsien Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery and Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pei-Yun Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Alice L Yu
- Institute of Stem Cell & Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, University of California in San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
4
|
Shivatare VS, Huang HW, Tseng TH, Chuang PK, Zeng YF, Wong CH. Probing the Internalization and Efficacy of Antibody-Drug Conjugate via Site-Specific Fc-Glycan Labelling of a Homogeneous Antibody Targeting SSEA-4 Bearing Tumors. Isr J Chem 2023; 63:e202300042. [PMID: 38348405 PMCID: PMC10861153 DOI: 10.1002/ijch.202300042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 02/15/2024]
Abstract
Antibody drug conjugates (ADC) are an emerging class of pharmaceuticals consisting of cytotoxic agents covalently attached to an antibody designed to target a specific cancer cell surface molecule followed by internalization and intracellular release of payload to exhibit its anticancer activity. Targeted delivery of cytotoxic payload to a variety of specific cells has been demonstrated to have significant enhancement in clinical efficacy and dramatic reduction in off-target toxicity. Site-specific conjugation of payload to the antibody is highly desirable for development of ADC with well-defined antibody-to-drug ratio, enhanced internalization, reduced toxicity, improved stability, desired pharmacological profile and optimal therapeutic index. Here, we reported a site-specific conjugation strategy for evaluation of antibody internalization and efficacy of ADC designed to target SSEA4 on solid tumors. This strategy stems from the azido-fucose tag of a homogeneous antibody Fc-glycan generated via in vitro glycoengineering approach for site-specific conjugation and optimization of antibody-drug ratio to exhibit optimal efficacy. The ADC consisting of a chimeric anti-SSEA4 antibody chMC813-70, conjugated to the antineo-plastic agent monomethyl auristatin E via both cleavable and non-cleavable linkers showed excellent cytotoxicity profile towards SSEA4-bearing cancer cells. A clear distinction in cytotoxicity was observed among cancer cells with different SSEA4 expression levels.
Collapse
Affiliation(s)
- Vidya S Shivatare
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Han-Wen Huang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Tzu-Hao Tseng
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Po-Kai Chuang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Yi-Fang Zeng
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Ruggiero FM, Martínez-Koteski N, Fidelio GD, Vilcaes AA, Daniotti JL. Golgi Phosphoprotein 3 Regulates the Physical Association of Glycolipid Glycosyltransferases. Int J Mol Sci 2022; 23:10354. [PMID: 36142273 PMCID: PMC9499508 DOI: 10.3390/ijms231810354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and β3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/β3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.
Collapse
Affiliation(s)
- Fernando M. Ruggiero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Natalia Martínez-Koteski
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Gerardo D. Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
7
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
8
|
Sigal DS, Hermel DJ, Hsu P, Pearce T. The role of Globo H and SSEA-4 in the development and progression of cancer, and their potential as therapeutic targets. Future Oncol 2021; 18:117-134. [PMID: 34734786 DOI: 10.2217/fon-2021-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glycans, chains of sugar molecules found conjugated to cell proteins and lipids, contribute to their growth, movement and differentiation. Aberrant glycosylation is a hallmark of several medical conditions including tumorigenesis. Glycosphingolipids (GSLs), consisting of glycans conjugated to a lipid (ceramide) core, are found in the lipid bilayer of eukaryotic cell membranes. GSLs, play an active role in cell processes. Several GSLs are expressed by human embryonic stem cells and have been found to be overexpressed in several types of cancer. In this review, we discuss the data, hypotheses and perspectives related to the GSLs Globo H and SSEA-4.
Collapse
Affiliation(s)
- Darren S Sigal
- Director, GI Oncology, Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - David J Hermel
- Scripps Clinic & Scripps MD Anderson Cancer Center, 10710 N Torrey Pines Road, LA Jolla, CA 92037, USA
| | - Pei Hsu
- Medical Advisor, Medical Affairs & Clinical Development, OBI Pharma Inc. 7F, No. 369, Zhongxiao E Road, Nangang District, Taipei City, 115, Taiwan
| | - Tillman Pearce
- Chief Medical Officer, OBI Pharma USA Inc., 6020 Cornerstone Court W, Suite 200, San Diego, CA 92121, USA
| |
Collapse
|