1
|
Xia T, Han F, Wang Y, Xie X, Yuan C, Lu G, Xiao W, Tu B, Ren H, Gong W, Wang Y. Inhibition of CD53 Reduces the Formation of ROS-Induced Neutrophil Extracellular Traps and Protects Against Inflammatory Injury in Acute Pancreatitis. J Inflamm Res 2025; 18:3725-3739. [PMID: 40098997 PMCID: PMC11913036 DOI: 10.2147/jir.s507886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background The tetraspanin CD53 transmembrane protein is vital in immune cells like B cells and T cells, playing a crucial role in various inflammatory conditions. However, its involvement in neutrophils regarding inflammation remains uncertain. This study aims to examine the impact of CD53 on neutrophil extracellular traps (NETs) formation. Methods Phorbol 12-myristate 13-acetate (PMA) was utilized to establish an in vitro classical NETs model to investigate the influence of CD53 on NETs formation and its regulatory mechanisms. Subsequently, the link between CD53 and acute pancreatitis (AP), a model of aseptic inflammatory responses connected to NETs, was verified. Peripheral blood neutrophils from clinical AP patients were collected to explore the role of CD53 in AP, while an AP mouse model induced by caerulein was employed to confirm the impact of CD53 inhibition on AP mice pancreatic tissue. Results Our study has shown that CD53 is significantly elevated in in vitro NETs models and neutrophils from AP patients. The expression of CD53 is closely related to the clinical prognosis of AP patients. At the same time, CD53 neutralizing antibody (Anti-CD53) can significantly inhibit the formation of NETs in vitro, inflammatory injury in AP mice and the formation of NETs in damaged tissues. Mechanistically, CD53 can modulate the PI3K/AKT pathway and promote the formation of NETs. Finally, targeted regulation of CD53 can effectively reduce inflammatory injury and NETs formation in damaged tissues of AP mice. Conclusion The results of this study mark the first confirmation that CD53 plays a crucial role in NETs formation. Targeting CD53 inhibition could potentially serve as a novel therapeutic approach for the treatment of AP.
Collapse
Affiliation(s)
- Tianqi Xia
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Fei Han
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yaning Wang
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xinyue Xie
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Bo Tu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hongbo Ren
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People's Republic of China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
- Yangzhou Key Laboratory of Pancreatic Disease, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, 215300, People's Republic of China
| |
Collapse
|
2
|
Hickey MJ, Sudhakar V. Looking below the surface: using intravital imaging to decipher inflammatory renal disease and renal cell injury. Am J Physiol Renal Physiol 2025; 328:F418-F430. [PMID: 39918796 DOI: 10.1152/ajprenal.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Renal function can be perturbed by a range of stimuli that cause cellular injury and inflammation in the kidney. These injurious and inflammatory processes are typically dynamic and progressive, involving the actions of highly migratory cells such as leukocytes and cellular responses that occur over time spans ranging from seconds to weeks. Understanding these dynamic responses has entailed the use of imaging technologies that allow visualization and capture of events over different time spans, ideally in intact organs in live, experimental animals. The technique that allows this is intravital imaging. Intravital imaging, particularly multiphoton intravital microscopy, has been crucial to the investigation of dynamic physiological and pathophysiological processes in the kidney for many years, driving key developments in our understanding of renal (patho)physiology. This includes the mechanisms of ultrafiltrate generation, the response to acute kidney injury, and how inflammatory leukocytes are recruited to and cause injury in the kidney. This review describes the key studies that have applied intravital imaging to the investigation of models of inflammatory renal disease. The responses examined include those restricted to the glomerulus and the effects of acute kidney injury on the tubulointerstitium. Future innovations and directions in this field of research are also discussed.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Vaishnavi Sudhakar
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Chakraborty M, Greenberg ZJ, Dong Q, Roundy N, Bednarski JJ, Paracatu LC, Duncavage E, Li W, Schuettpelz LG. Cutting Edge: The Tetraspanin CD53 Promotes CXCR4 Signaling and Bone Marrow Homing in B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1075-1080. [PMID: 38363205 PMCID: PMC10948292 DOI: 10.4049/jimmunol.2300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
B cell trafficking involves the coordinated activity of multiple adhesive and cytokine-receptor interactions, and the players in this process are not fully understood. In this study, we identified the tetraspanin CD53 as a critical regulator of both normal and malignant B cell trafficking. CXCL12 is a key chemokine in B cell homing to the bone marrow and secondary lymphoid organs, and both normal and malignant B cells from Cd53-/- mice have reduced migration toward CXCL12 in vitro, as well as impaired marrow homing in vivo. Using proximity ligation studies, we identified the CXCL12 receptor, CXCR4, as a novel, to our knowledge, CD53 binding partner. This interaction promotes receptor function, because Cd53-/- B cells display reduced signaling and internalization of CXCR4 in response to CXCL12. Together, our data suggest that CD53 interacts with CXCR4 on both normal and malignant B cells to promote CXCL12 signaling, receptor internalization, and marrow homing.
Collapse
Affiliation(s)
- Mousumi Chakraborty
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qian Dong
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nate Roundy
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J. Bednarski
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Luana Chiquetto Paracatu
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Liu X, Xiao H, Peng X, Chai Y, Wang S, Wen G. Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis. Front Immunol 2023; 13:1050743. [PMID: 36700234 PMCID: PMC9869167 DOI: 10.3389/fimmu.2022.1050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoarthritis (OA) is a common orthopedic degenerative disease, leading to high disability in activities of daily living. There remains an urgent need to identify the underlying mechanisms and identify new therapeutic targets in OA diagnosis and treatment. Circular RNAs (circRNAs) play a role in the development of multiple diseases. Many studies have reported that circRNAs regulate microRNAs (miRNAs) through an endogenous competitive mechanism. However, it remains unclear if an interplay between circRNAs, miRNAs, and target genes plays a deeper regulatory role in OA. Four datasets were downloaded from the GEO database, and differentially expressed circRNAs (DECs), differentially expressed miRNAs (DEMs), and differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analysis of DEGs and DECs were carried out to determine the main associated mechanism in OA. A protein-protein network (PPI) was constructed to analyze the function of, and to screen out, hub DEGs in OA. Based on the artificial intelligence prediction of protein crystal structures of two hub DEGs, TOP2A and PLK1, digitoxin and oxytetracycline were found to have the strongest affinity, respectively, with molecular docking. Subsequently, overlapping DEMs and miRNAs targeted by DECs obtained target DEMs (DETMs). Intersection of DEGs and genes targeted by DEMs obtained target DEGs (DETGs). Thus, a circRNA-miRNA-mRNA regulatory network was constructed from 16 circRNAs, 32 miRNAs, and 97 mRNAs. Three hub DECs have the largest number of regulated miRNAs and were verified through in vitro experiments. In addition, the expression level of 16 DECs was validated by RT-PCR. In conclusion, we constructed a circRNA-miRNA-mRNA regulatory network in OA and three new hub DECs, hsa_circ_0027914, hsa_circ_0101125, and hsa_circ_0102564, were identified as novel biomarkers for OA.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaotong Peng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| |
Collapse
|
5
|
Gottschalk TA, Hall P, Tsantikos E, L’Estrange-Stranieri E, Hickey MJ, Hibbs ML. Loss of CD11b Accelerates Lupus Nephritis in Lyn-Deficient Mice Without Disrupting Glomerular Leukocyte Trafficking. Front Immunol 2022; 13:875359. [PMID: 35634296 PMCID: PMC9134083 DOI: 10.3389/fimmu.2022.875359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous autoimmune disease. A common manifestation, lupus nephritis, arises from immune complex deposition in the kidney microvasculature promoting leukocyte activation and infiltration, which triggers glomerular damage and renal dysfunction. CD11b is a leukocyte integrin mainly expressed on myeloid cells, and aside from its well-ascribed roles in leukocyte trafficking and phagocytosis, it can also suppress cytokine production and autoreactivity. Genome-wide association studies have identified loss-of-function polymorphisms in the CD11b-encoding gene ITGAM that are strongly associated with SLE and lupus nephritis; however, it is not known whether these polymorphisms act alone to induce disease or in concert with other risk alleles. Herein we show using Itgam-/- mice that loss of CD11b led to mild inflammatory traits, which were insufficient to trigger autoimmunity or glomerulonephritis. However, deficiency of CD11b in autoimmune-prone Lyn-deficient mice (Lyn-/-Itgam-/-) accelerated lupus-like disease, driving early-onset immune cell dysregulation, autoantibody production and glomerulonephritis, impacting survival. Migration of leukocytes to the kidney in Lyn-/- mice was unhindered by lack of CD11b. Indeed, kidney inflammatory macrophages were further enriched, neutrophil retention in glomerular capillaries was increased and kidney inflammatory cytokine responses were enhanced in Lyn-/-Itgam-/- mice. These findings indicate that ITGAM is a non-monogenic autoimmune susceptibility gene, with loss of functional CD11b exacerbating disease without impeding glomerular leukocyte trafficking when in conjunction with other pre-disposing genetic mutations. This highlights a primarily protective role for CD11b in restraining inflammation and autoimmune disease and provides a potential therapeutic avenue for lupus treatment.
Collapse
Affiliation(s)
- Timothy A. Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Elan L’Estrange-Stranieri
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L. Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Margaret L. Hibbs,
| |
Collapse
|