1
|
Abstract
Hepatitis C virus (HCV) is a small positive-sense, single-stranded RNA virus, the causal organism for chronic hepatitis. Chronic hepatitis leads to inflammation of liver, causing cirrhosis, fibrosis and steatosis, which may ultimately lead to liver cancer in a few cases. Innate and adaptive immune responses play an important role in the pathogenesis of HCV infection, thus acting as an important component in deciding the fate of the disease. Numerous studies have indicated that the derangement of these immune responses results in the persistence of infection leading to chronic state of the disease. Interactions between virus and host immune system generally result in the elimination of virus, but as the virus evolves with different evading mechanisms, it makes environment favourable for its survival and replication. It has been reported that HCV impairs the immune system by functional modulation of the cells of innate as well as adaptive immune responses, resulting in chronic state of the disease, influencing the response to antiviral therapy in these patients. These defects in the immune system lead to suboptimal immune responses and therefore, impaired effector functions. This review highlights the involvement or association of different immune cells such as natural killer cells, B cells, dendritic cells and T cells in HCV infection and how the virus plays a role in manipulating certain regulatory mechanisms to make these cells dysfunctional for its own persistence and survival.
Collapse
Affiliation(s)
- Shallu Tomer
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
2
|
Nicholson LK, Pratap H, Bowers E, Gunzburger E, Bandi SR, Gardner EM, Palmer BE, Wright T, Kittelson J, Janoff EN. Effective B cell activation in vitro during viremic HIV-1 infection with surrogate T cell stimulation. Immunobiology 2018; 223:839-849. [PMID: 30219203 PMCID: PMC6264910 DOI: 10.1016/j.imbio.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Identifying HIV-1-associated B cell defects and responses to activation may direct interventions to circumvent their impaired antibody responses to infection and vaccines. Among 34 viremic HIV-1-infected and 20 seronegative control adults, we measured baseline frequencies and activation of B and T cell subsets, expression of activation-induced cytidine deaminase (AID), potential determinants of B cell activation in vivo and B and T cell responses in vitro. At baseline, HIV-1 infection was associated with increased IgM memory and decreased anergic cell frequencies, as well as increased activation in all 10 B cell subsets compared with controls. HIV-1 status, TFH activation, and BAFF were significant potential drivers of B cell activation. Despite high baseline activation among HIV-1-infected subjects, stimulation in vitro with combined surrogates for antigen (anti-IgM), cognate (CD40 ligand) and soluble T cell factors (IL-4) elicited comparable B cell activation, transitions from naïve to class-switched memory cells and AID expression in both groups. In summary, viremic HIV-1 infection perturbs circulating B cell subsets and activation at each stage of B cell maturation. However, that appropriate stimulation of B cells elicits effective activation and maturation provides impetus for advancing vaccine development to prevent secondary infections by circumventing early B cell defects.
Collapse
Affiliation(s)
- Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Veterans Affairs Medical Center, Denver, CO, United States
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Veterans Affairs Medical Center, Denver, CO, United States
| | - Elisabeth Bowers
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Veterans Affairs Medical Center, Denver, CO, United States
| | - Elise Gunzburger
- Departments of Biostatistics, University of Colorado Denver, Aurora, CO, United States
| | - Srinivasa R Bandi
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Edward M Gardner
- Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Health and Hospital Authority, Denver, CO, United States
| | - Brent E Palmer
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Timothy Wright
- Denver Health and Hospital Authority, Denver, CO, United States
| | - John Kittelson
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Biostatistics, University of Colorado Denver, Aurora, CO, United States
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), United States; Departments of Medicine, University of Colorado Denver, Aurora, CO, United States; Denver Veterans Affairs Medical Center, Denver, CO, United States.
| |
Collapse
|