1
|
Xie Q, Liu X, Liu R, Pan J, Liang J. Cellular mechanisms of combining innate immunity activation with PD-1/PD-L1 blockade in treatment of colorectal cancer. Mol Cancer 2024; 23:252. [PMID: 39529058 PMCID: PMC11555832 DOI: 10.1186/s12943-024-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
PD-1/PD-L1 blockade therapies have displayed extraordinary clinical efficacy for melanoma, renal, bladder and lung cancer; however, only a minority of colorectal cancer (CRC) patients benefit from these treatments. The efficacy of PD-1/PD-L1 blockade in CRC is limited by the complexities of tumor microenvironment. PD-1/PD-L1 blockade immunotherapy is based on T cell-centered view of tumor immunity. However, the onset and maintenance of T cell responses and the development of long-lasting memory T cells depend on innate immune responses. Acknowledging the pivotal role of innate immunity in anti-tumor immune response, this review encapsulates the employment of combinational therapies those involve PD-1/PD-L1 blockade alongside the activation of innate immunity and explores the underlying cellular mechanisms, aiming to harnessing innate immune responses to induce long-lasting tumor control for CRC patients who received PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, 250014, China.
| |
Collapse
|
2
|
Wang Y, Du W, Hu X, Yu X, Guo C, Jin X, Wang W. Targeting the blood-brain barrier to delay aging-accompanied neurological diseases by modulating gut microbiota, circadian rhythms, and their interplays. Acta Pharm Sin B 2023; 13:4667-4687. [PMID: 38045038 PMCID: PMC10692395 DOI: 10.1016/j.apsb.2023.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Affiliated Hospital of Jiaxing City, Jiaxing 314000, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xin Yu
- Bengbu Medical College (Department of Neurology, the Second Hospital of Jiaxing City), Jiaxing 233030, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Gulyás D, Kovács G, Jankovics I, Mészáros L, Lőrincz M, Dénes B. Effects of the combination of a monoclonal agonistic mouse anti-OX40 antibody and toll-like receptor agonists: Unmethylated CpG and LPS on an MB49 bladder cancer cell line in a mouse model. PLoS One 2022; 17:e0270802. [PMID: 35802726 PMCID: PMC9269874 DOI: 10.1371/journal.pone.0270802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The basis of the antitumor immunotherapy, of which the purpose is the stimulation of the immune system. We have used two of the Pathogen Associated Molecular Patterns: unmethylated CpG oligonucleotide, a ligand of Toll-like receptor 9 (TLR9), and lipopolysaccharide (LPS) which is recognized by TLR4, combined with an agonistic OX40 receptor-specific monoclonal antibody (anti-OX40), which is expressed by activated regulatory T-cells (and by other activated T-cell populations as well). The objective of this study was to prove the effectiveness of the aforementioned compounds in an animal model, on a bladder cancer cell line. Methods We have instilled MB49 cells subcutaneously, to the left musculus biceps femoris. We have created three observation groups, each containing ten mice. After eleven days, all treated mice bearing the size of 5–8 mm (in diameter) tumor were administered CpG + anti-OX40 or LPS + anti-OX40 three times with a three-day lap between each treatment. Mice in the control group did not receive any treatment. Results All the specimens from the control and LPS + anti-OX40 groups have died by the sixtieth day of the observation period, however, five mice from the CpG + anti-OX40 group were still alive. The experiment lasted until the last surviving mouse died, which occurred on the 357th day after tumor implantation. Discussion The treatment with LPS did not make anti-OX40 more potent and did not increase the survival times. However, CpG + anti-OX40 has shown increased antitumor activity compared to the other two groups.
Collapse
Affiliation(s)
- Dominik Gulyás
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
- * E-mail: (DG); (BD)
| | - Gábor Kovács
- Department of Urology, Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | | | - László Mészáros
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
- * E-mail: (DG); (BD)
| |
Collapse
|
4
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
5
|
Rogava M, Braun AD, van der Sluis TC, Shridhar N, Tüting T, Gaffal E. Tumor cell intrinsic Toll-like receptor 4 signaling promotes melanoma progression and metastatic dissemination. Int J Cancer 2022; 150:142-151. [PMID: 34528710 DOI: 10.1002/ijc.33804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Most melanoma-associated deaths result from the early development of metastasis. Toll-like receptor 4 (TLR4) expression on nontumor cells is well known to contribute to tumor development and metastatic progression. The role of TLR4 expression on tumor cells however is less well understood. Here we describe TLR4 as a driver of tumor progression and metastatic spread of melanoma cells by employing a transplantable mouse melanoma model. HCmel12 melanoma cells lacking functional TLR4 showed increased sensitivity to tumor necrosis factor α induced cell killing in vitro compared to cells with intact TLR4. Interestingly, TLR4 knockout melanoma cells also showed impaired migratory capacity in vitro and a significantly reduced ability to metastasize to the lungs after subcutaneous transplantation in vivo. Finally, we demonstrate that activation of TLR4 also promotes migration in a subset of human melanoma cell lines. Our work describes TLR4 as an important mediator of melanoma migration and metastasis and provides a rationale for therapeutic inhibition of TLR4 in melanoma.
Collapse
Affiliation(s)
- Meri Rogava
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Andreas Dominik Braun
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | | | - Naveen Shridhar
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Liu S, Gao J, Liu K, Zhang HL. Microbiota-gut-brain axis and Alzheimer's disease: Implications of the blood-brain barrier as an intervention target. Mech Ageing Dev 2021; 199:111560. [PMID: 34411603 DOI: 10.1016/j.mad.2021.111560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
The microbiota-gut-brain axis has emerged as a focal point of biomedical research. Alterations of gut microbiota are involved in not only various immune/inflammatory disorders but also neurological disorders including Alzheimer's disease (AD). The initial stage of the involvement of gut microbiota in the pathogenesis of AD may be the dysfunction of the blood-brain barrier (BBB). Gut microbiota-derived products in the circulation can worsen the BBB integrity, easily cross the disrupted BBB and enter the brain to promote pathological changes in AD. In this review, we first summarize the current evidence of the associations among gut microbiota, AD, and BBB integrity. We then discuss the mechanism of gut microbiota on BBB dysfunction with a focus on bacteria-derived lipopolysaccharide and exosomal high-mobility group box 1. Novel insights into the modification of the BBB as an intervention approach for AD are highlighted as well.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, 100085, Beijing, China.
| |
Collapse
|
7
|
Guerra FS, Rodrigues DA, Fraga CAM, Fernandes PD. Novel Single Inhibitor of HDAC6/8 and Dual Inhibitor of PI3K/HDAC6 as Potential Alternative Treatments for Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050387. [PMID: 33919077 PMCID: PMC8143108 DOI: 10.3390/ph14050387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Prostate cancer is the second most frequently diagnosed malignancy worldwide. Here, the cytotoxic and antimetastatic effects of a new HDAC6/8 inhibitor, LASSBio-1911, and a new dual-PI3K/HDAC6 inhibitor, LASSBio-2208, were evaluated against PC3 prostate cancer cell line. Methods: A MTT assay was used to assess the cell viability. Annexin V/propidium iodide (PI) was used to detect apoptotic cell death and to analyze the cell cycle distribution. Interleukin 6 (IL-6) levels were measured by ELISA. A cell scratch assay was performed to assess cell migration, and the expression of proteins was estimated by Western blotting. Results: LASSBio-1911 and LASSBio-2208 exert cytotoxic effects against PC3 cells. However, LASSBio-2208 was demonstrated to be more potent than LASSBio-1911. The apoptosis assays showed that both compounds trigger apoptotic processes and cause the arrest of cells in the G2/M phase of the cell cycle. The Western blot analysis revealed that LASSBio-2208 significantly decreased the expression of p-JNK and JAK2. However, both compounds reduced the expression of p-STAT3, IL-6 secretion, and cell migration. Conclusions: LASSBio-1911 and LASSBio-2208 demonstrated significant activity in reducing cell viability and migration. These compounds can be further used as prototypes for the development of new potential anticancer alternative treatments.
Collapse
Affiliation(s)
- Fabiana Sélos Guerra
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Daniel Alencar Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (D.A.R.); (C.A.M.F.)
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (D.A.R.); (C.A.M.F.)
| | - Patricia Dias Fernandes
- Laboratório de Farmacologia da Dor e da Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
- Correspondence:
| |
Collapse
|
8
|
Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021; 42:83-111. [PMID: 33856076 DOI: 10.1002/med.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota has a vast influence on human health and its role in initiating, aggravating, or ameliorating diseases is beginning to emerge. Recently, its contribution to heterogeneous toxicological responses is also gaining attention, especially in drug-induced toxicity. Whether they are orally administered or not, drugs may interact with the gut microbiota directly or indirectly, which leads to altered toxicity. Present studies focus more on the unidirectional influence of how xenobiotics disturb intestinal microbial composition and functions, and thus induce altered homeostasis. However, interactions between the gut microbiota and xenobiotics are bidirectional and the impact of the gut microbiota on xenobiotics, especially on drugs, should not be neglected. Thus, in this review, we focus on how the gut microbiota modulates drug toxicity by highlighting the microbiome, microbial enzyme, and microbial metabolites. We connect the dots between drugs, the microbiome, microbial enzymes or metabolites, drug metabolites, and host toxicological responses to facilitate the discovery of microbial targets and mechanisms associated with drug toxicity. Besides this, current mainstream strategies to manipulate drug toxicity by targeting the microbiome are summarized and discussed. The review provides technical reference for the evaluation of medicinal properties in the research and development of innovative drugs, and for the future exploitation of strategies to reduce drug toxicity by targeting the microbiome.
Collapse
Affiliation(s)
- Yusha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8 + T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021; 26:951-967. [PMID: 33450394 PMCID: PMC8131230 DOI: 10.1016/j.drudis.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Host immunity has an essential role in the clinical management of cancers. Therefore, it is advantageous to choose therapies that can promote tumor cell death and concurrently boost host immunity. The dynamic tumor microenvironment (TME) determines whether an antineoplastic drug will elicit favorable or disparaging immune responses from tumor-infiltrating lymphocytes (TILs). CD8+ T cells are one of the primary tumor-infiltrating immune cells that deliver antitumor responses. Here, we review the influence of various factors in the TME on CD8+ T cell exhaustion and survival, and possible strategies for restoring CD8+ T cell effector function through immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Cui L, Wang X, Zhang D. TLRs as a Promise Target Along With Immune Checkpoint Against Gastric Cancer. Front Cell Dev Biol 2021; 8:611444. [PMID: 33469538 PMCID: PMC7813757 DOI: 10.3389/fcell.2020.611444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world, and the incidence of gastric cancer in Asia appears to increase in recent years. Although there is a lot of improvement in treatment approaches, the prognosis of GC is poor. So it is urgent to search for a novel and more effective treatment to improve the survival rate of patients. Both innate immunity and adaptive immunity are important in cancer. In the innate immune system, pattern recognition receptors (PRRs) activate immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs). Many studies have reported that TLRs are involved in the occurrence, development, and treatment of GC. Therefore, TLRs are potential targets for immunotherapy to gastric cancer. However, gastric cancer is a heterogeneous disorder, and TLRs function in GC is complex. TLRs agonists can be potentially used not only as therapeutic agents to treat gastric cancer but also as adjuvants in conjunction with other immunotherapies. They might provide a promising new target for GC treatment. In the review, we sort out the mechanism of TLRs involved in tumor immunity and summarize the current progress in TLRs-based therapeutic approaches and other immunotherapies in the treatment of GC.
Collapse
Affiliation(s)
- Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiuqing Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|