1
|
Fowler EA, Sacramento LA, Bowman BA, Lee B, Lio CWJ, Dong YD, Spicer JA, Trapani JA, Novais FO. Hypoxia and IL-15 cooperate to induce perforin expression by CD8 T cells and promote damage to the skin in murine cutaneous leishmaniasis. J Invest Dermatol 2025:S0022-202X(25)00479-8. [PMID: 40373956 DOI: 10.1016/j.jid.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
Cutaneous leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania, and although parasites influence disease severity, cytotoxic CD8 T cell responses mediate damage to the infected skin. We found that the cytotoxic protein perforin was expressed in CD8 T cells only upon recruitment to Leishmania-infected skin, suggesting that lesional inflammatory cues induced perforin. Here, using a mouse model of Leishmania major infection, we demonstrated that the expression of perforin was driven by a combination of hypoxia and IL-15, both of which are microenvironmental signals present within Leishmania-infected skin. We also demonstrated that the major sources of Il15 mRNA in cutaneous leishmaniasis lesions are neutrophils and macrophages and that macrophages exposed to hypoxia in vitro produce more Il15. Since perforin is only present in lesions, we reformulated a small molecule perforin inhibitor for topical application and found that local inhibition of perforin is sufficient to ameliorate disease in established cutaneous leishmaniasis. Thus, topical perforin inhibition may be considered a therapeutic strategy for patients with cutaneous leishmaniasis and other inflammatory skin diseases where cytotoxic CD8 T cells contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Erin A Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Laís Amorim Sacramento
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania; Philadelphia, USA
| | - Bridget A Bowman
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Bella Lee
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA
| | - Chan-Wang J Lio
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA; Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Yao-Da Dong
- Medicine Manufacturing Innovation Centre, Monash Institute for Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Julie A Spicer
- Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| | | | - Fernanda O Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University; Columbus, USA.
| |
Collapse
|
2
|
Koh CC, Gollob KJ, Dutra WO. Cytokine Networks and the Clinical Outcome of American Teg-Umentary Leishmaniasis: Unveiling Targets for Alternative Therapeutic Interventions. Pathogens 2025; 14:188. [PMID: 40005563 PMCID: PMC11858318 DOI: 10.3390/pathogens14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
American Tegumentary Leishmaniasis (ATL), caused by parasites of the genus Leishmania, presents a significant global health challenge, especially in Brazil, where cutaneous and mucosal forms are highly prevalent. Cutaneous Leishmaniasis (CL) typically results in single lesions, while mucosal Leishmaniasis (ML) leads to destructive mucosal lesions with a worse prognosis. The immune response, regulated by cytokines, plays a crucial role in disease progression and resolution. In CL, a balance between pro-inflammatory and anti-inflammatory cytokines is associated with lesion resolution, whereas in ML, an exaggerated inflammatory response worsens tissue damage. Thus, understanding cytokine regulation is essential for unveiling disease pathology and developing effective immunotherapeutic strategies. Here we discuss gene polymorphisms and epigenetic modifications that affect cytokine expression, influencing disease susceptibility and severity, as well as immunotherapeutic approaches that involve cytokine function in Leishmaniasis. In addition, we examine advancements in drug discovery, utilizing in silico methods and targeted drug delivery systems, providing potential avenues for better therapeutic interventions. Continuous research into immune responses and cytokine production and function is critical for identifying novel therapeutic targets and optimizing patient care for ATL.
Collapse
Affiliation(s)
- Carolina Cattoni Koh
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| | - Kenneth J. Gollob
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| |
Collapse
|
3
|
Rishabh K, Matosevic S. The diversity of natural killer cell functional and phenotypic states in cancer. Cancer Metastasis Rev 2025; 44:26. [PMID: 39853430 DOI: 10.1007/s10555-025-10242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
The role of natural killer (NK) cells as immune effectors is well established, as is their utility as immunotherapeutic agents against various cancers. However, NK cells' anti-cancer roles are suppressed in cancer patients by various immunomodulatory mechanisms which alter these cells' identity, function, and potential for immunosurveillance. This manifests in abnormal NK cell responses accompanied by changes in phenotypic or genotypic identity, giving rise to specific NK cell subsets that are either hypofunctional or, more broadly, defective in their responses. Anergy, senescence, and exhaustion are some of the terms that have been used to define and characterize these NK cell functional states. These responses vary not only with cancer type but also NK cell location within tissues. Collectively, these phenomena suggest a highly plastic nature of NK cell biology in tumors. In this review, we present and discuss a summary of these functionally distinct states and provide an overview of how NK cells behave at different locations within the context of cancer.
Collapse
Affiliation(s)
- Kumar Rishabh
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Covre LP, Fantecelle CH, Garcia de Moura R, Oliveira Lopes P, Sarmento IV, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL, da Fonsceca-Martins AM, de Carvalho LP, de Carvalho EM, Mosser DM, Falqueto A, Akbar AN, Gomes DCO. Lesional senescent CD4 + T cells mediate bystander cytolysis and contribute to the skin pathology of human cutaneous leishmaniasis. Front Immunol 2024; 15:1475146. [PMID: 39497830 PMCID: PMC11532160 DOI: 10.3389/fimmu.2024.1475146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4+ granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57. Notably, CD4+ T cells freshly isolated from CL lesions demonstrated remarkable capacity to mediate NL-like bystander cytolysis. Phenotypic analyses revealed that lesional CD4+ T cells are mainly composed of late-differentiated effector (CD27-CD45RA-) and terminally differentiated (senescent) TEMRA (CD27-CD45RA+) subsets. Interestingly, the TEMRA CD4+ T cells exhibited higher expression of granzyme B and CD107a. Collectively, our results provide the first evidence that senescent cytotoxic CD4+ T cells may support the skin pathology of human cutaneous leishmaniasis and, together with our previous findings, support the notion that multiple subsets of cytotoxic senescent cells may be involved in inducing the skin lesions in these patients.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Paola Oliveira Lopes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Debora Decote-Ricardo
- Departamento de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
6
|
Covre LP, Fantecelle CH, Queiroz AM, Fardin JM, Miranda PH, Henson S, da Fonseca-Martins AM, de Matos Guedes HL, Mosser D, Falqueto A, Akbar A, Gomes DCO. NKG2C+CD57+ natural killer cells with senescent features are induced during cutaneous leishmaniasis and accumulate in patients with lesional healing impairment. Clin Exp Immunol 2024; 217:279-290. [PMID: 38700066 PMCID: PMC11310703 DOI: 10.1093/cei/uxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Abstract
Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, UK
| | | | | | - Julia Miranda Fardin
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Sian Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne Akbar
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Division of Medicine, University College London, London, UK
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Abreu CA, Nascimento MT, Bacellar O, Carvalho LP, Carvalho EM, Cardoso TM. The Role of Senescent CD8 +T Cells in the Pathogenesis of Disseminated Leishmaniasis. Pathogens 2024; 13:460. [PMID: 38921758 PMCID: PMC11207099 DOI: 10.3390/pathogens13060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Disseminated leishmaniasis (DL) caused by L. braziliensis is characterized by the presence of 10 to more than 1000 lesions spread on the body. While protection against Leishmania is mediated by macrophages upon activation by IFN-γ produced by CD4+T cells, the pathology of disseminated leishmaniasis (DL) could be mediated by macrophages, NK, and CD8+T cells. Herein, we evaluate the participation of senescent CD8+T cells in the pathogenesis of DL. Methods: Peripheral blood mononuclear cells (PBMCs), biopsies, co-cultures of CD8+T cells with uninfected and infected macrophages (MØ), and PBMC cultures stimulated with soluble L. braziliensis antigen (SLA) for 72 h from patients with cutaneous leishmaniasis (CL) and DL were used to characterize senescent CD8+T cells. Statistical analysis was performed using the Mann-Whitney and Kruskal-Wallis tests, followed by Dunn's. Results: Patients with DL have an increase in the frequency of circulating CD8+T cells that present a memory/senescent phenotype, while lesions from DL patients have an increase in the frequency of infiltrating CD8+T cells with a senescent/degranulation phenotype. In addition, after specific stimuli, DL patients' circulating CD8+T with memory/senescent profile, showing degranulation characteristics, increased upon SLA stimuli, and those specific CD8+T cells from DL patients had an increased degranulation phenotype, causing more apoptosis of infected target cells. Conclusions: DL patients show a higher frequency of cytotoxic senescent CD8+T cells compared to CL patients, and that could promote the lysis of infected cells, although without parasite killing, releasing Leishmania to the extracellular compartment, contributing to the spread of parasites.
Collapse
Affiliation(s)
- Cayo A. Abreu
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
| | | | - Olívia Bacellar
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Lucas Pedreira Carvalho
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Edgar Marcelino Carvalho
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| | - Thiago Marconi Cardoso
- LAPEC-Fiocruz, Salvador 40296-710, Brazil; (C.A.A.); (M.T.N.); (L.P.C.); (E.M.C.)
- Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil;
| |
Collapse
|
8
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
9
|
Saidi N, Blaizot R, Prévot G, Aoun K, Demar M, Cazenave PA, Bouratbine A, Pied S. Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Front Immunol 2023; 14:1134020. [PMID: 37575260 PMCID: PMC10421664 DOI: 10.3389/fimmu.2023.1134020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 08/15/2023] Open
Abstract
Cutaneous leishmaniasis (CL) caused by infection with the parasite Leishmania exhibits a large spectrum of clinical manifestations ranging from single healing to severe chronic lesions with the manifestation of resistance or not to treatment. Depending on the specie and multiple environmental parameters, the evolution of lesions is determined by a complex interaction between parasite factors and the early immune responses triggered, including innate and adaptive mechanisms. Moreover, lesion resolution requires parasite control as well as modulation of the pathologic local inflammation responses and the initiation of wound healing responses. Here, we have summarized recent advances in understanding the in situ immune response to cutaneous leishmaniasis: i) in North Africa caused by Leishmania (L.) major, L. tropica, and L. infantum, which caused in most cases localized autoresolutives forms, and ii) in French Guiana resulting from L. guyanensis and L. braziliensis, two of the most prevalent strains that may induce potentially mucosal forms of the disease. This review will allow a better understanding of local immune parameters, including cellular and cytokines release in the lesion, that controls infection and/or protect against the pathogenesis in new world compared to old world CL.
Collapse
Affiliation(s)
- Nasreddine Saidi
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
| | - Romain Blaizot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Ghislaine Prévot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Karim Aoun
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Magalie Demar
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Pierre André Cazenave
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Aida Bouratbine
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sylviane Pied
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
10
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
11
|
Almeida FS, Vanderley SER, Comberlang FC, Andrade AGD, Cavalcante-Silva LHA, Silva EDS, Palmeira PHDS, Amaral IPGD, Keesen TSL. Leishmaniasis: Immune Cells Crosstalk in Macrophage Polarization. Trop Med Infect Dis 2023; 8:tropicalmed8050276. [PMID: 37235324 DOI: 10.3390/tropicalmed8050276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis is a complex infectious parasitic disease caused by protozoa of the genus Leishmania, belonging to a group of neglected tropical diseases. It establishes significant global health challenges, particularly in socio-economically disadvantaged regions. Macrophages, as innate immune cells, play a crucial role in initiating the inflammatory response against the pathogens responsible for this disease. Macrophage polarization, the process of differentiating macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, is essential for the immune response in leishmaniasis. The M1 phenotype is associated with resistance to Leishmania infection, while the M2 phenotype is predominant in susceptible environments. Notably, various immune cells, including T cells, play a significant role in modulating macrophage polarization by releasing cytokines that influence macrophage maturation and function. Furthermore, other immune cells can also impact macrophage polarization in a T-cell-independent manner. Therefore, this review comprehensively examines macrophage polarization's role in leishmaniasis and other immune cells' potential involvement in this intricate process.
Collapse
Affiliation(s)
- Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Edson Dos Santos Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Ian P G do Amaral
- Laboratory of Biochemistry, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
12
|
Fantecelle CH, Covre LP, Garcia de Moura R, Guedes HLDM, Amorim CF, Scott P, Mosser D, Falqueto A, Akbar AN, Gomes DCO. Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 + T cell immunosenescence signature linked to immunopathology. Immunology 2021; 164:754-765. [PMID: 34432883 DOI: 10.1111/imm.13410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions. The senescence-associated signature was characterized by marked expression of key genes such as ATM, Sestrin 2, p16, p21 and p38. The cell type identification from deconvolution of bulk sequencing data showed that the senescence signature was linked with CD8+ effector memory and TEMRA subsets and also senescent NK cells. A key observation was that the senescence markers in the skin lesions are age-independent of patients and were correlated with lesion size. Moreover, a striking expression of the senescence-associated secretory phenotype (SASP), pro-inflammatory cytokine and chemokines genes was found within lesions that were most strongly associated with the senescent CD8 TEMRA subset. Collectively, our results confirm that there is a senescence transcriptomic signature in CL lesions and supports the hypothesis that lesional senescent cells have a major role in mediating immunopathology of the disease.
Collapse
Affiliation(s)
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil.,Division of Medicine, University College London, London, UK
| | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil.,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil
| |
Collapse
|
13
|
da Fonseca-Martins AM, de Souza Lima-Gomes P, Antunes MM, de Moura RG, Covre LP, Calôba C, Rocha VG, Pereira RM, Menezes GB, Gomes DCO, Saraiva EM, de Matos Guedes HL. Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity. Front Immunol 2021; 12:598943. [PMID: 34211455 PMCID: PMC8240668 DOI: 10.3389/fimmu.2021.598943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.
Collapse
Affiliation(s)
- Alessandra M da Fonseca-Martins
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Phillipe de Souza Lima-Gomes
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Luciana P Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil.,Division of Medicine, University College London, London, United Kingdom
| | - Carolina Calôba
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Grizente Rocha
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata M Pereira
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Elvira M Saraiva
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L de Matos Guedes
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Mota CA, Oyama J, Souza Terron Monich MD, Brustolin AÁ, Perez de Souza JV, Murase LS, Ghiraldi Lopes LD, Silva Santos TD, Vieira Teixeira JJ, Verzignassi Silveira TG. Three decades of clinical trials on immunotherapy for human leishmaniases: a systematic review and meta-analysis. Immunotherapy 2021; 13:693-721. [PMID: 33853344 DOI: 10.2217/imt-2020-0184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: Current treatments for leishmaniases are not satisfactory, thus alternatives are needed. We searched for clinical trials with immunotherapeutic approaches for patients with leishmaniasis. Materials & methods: Out of 205 articles, 24 clinical trials were selected, and eight submitted to meta-analysis. Results: A reduction in healing time was observed in patients with tegumentary leishmaniasis treated with pentavalent antimony plus granulocyte-macrophage colony-stimulating factor, and therapeutic vaccines. Overall meta-analysis indicated that immunotherapy associated with the standard chemotherapy generated a significantly reduced risk of treatment failure than the pentavalent antimony alone (p = 0.03). Conclusion: Our review confirmed the efficacy of immunotherapies for the treatment of cutaneous and visceral leishmaniasis and highlighted the importance of clinical trials using immunotherapies for leishmaniases.
Collapse
Affiliation(s)
- Camila Alves Mota
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Jully Oyama
- Graduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Aline Ávila Brustolin
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - João Vítor Perez de Souza
- Graduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Letícia Sayuri Murase
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Luciana Dias Ghiraldi Lopes
- Laboratory of Clinical Virology, Department of Clinical Analysis & Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Thais da Silva Santos
- Graduate Program in Bioscience & Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Jorge Juarez Vieira Teixeira
- Laboratory of Leishmaniases, Department of Clinical Analysis & Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Thaís Gomes Verzignassi Silveira
- Laboratory of Leishmaniases, Department of Clinical Analysis & Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
15
|
Novais FO, Amorim CF, Scott P. Host-Directed Therapies for Cutaneous Leishmaniasis. Front Immunol 2021; 12:660183. [PMID: 33841444 PMCID: PMC8032888 DOI: 10.3389/fimmu.2021.660183] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations from self-resolving infections to severe chronic disease. Anti-parasitic drugs are often ineffective in the most severe forms of the disease, and in some cases the magnitude of the disease can result from an uncontrolled inflammatory response rather than unrestrained parasite replication. In these patients, host-directed therapies offer a novel approach to improve clinical outcome. Importantly, there are many anti-inflammatory drugs with known safety and efficacy profiles that are currently used for other inflammatory diseases and are readily available to be used for leishmaniasis. However, since leishmaniasis consists of a wide range of clinical entities, mediated by a diverse group of leishmanial species, host-directed therapies will need to be tailored for specific types of leishmaniasis. There is now substantial evidence that host-directed therapies are likely to be beneficial beyond autoimmune diseases and cancer and thus should be an important component in the armamentarium to modulate the severity of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Garcia de Moura R, Covre LP, Fantecelle CH, Gajardo VAT, Cunha CB, Stringari LL, Belew AT, Daniel CB, Zeidler SVV, Tadokoro CE, de Matos Guedes HL, Zanotti RL, Mosser D, Falqueto A, Akbar AN, Gomes DCO. PD-1 Blockade Modulates Functional Activities of Exhausted-Like T Cell in Patients With Cutaneous Leishmaniasis. Front Immunol 2021; 12:632667. [PMID: 33767700 PMCID: PMC7985249 DOI: 10.3389/fimmu.2021.632667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Patients infected by Leishmania braziliensis develop debilitating skin lesions. The role of inhibitory checkpoint receptors (ICRs) that induce T cell exhaustion during this disease is not known. Transcriptional profiling identified increased expression of ICRs including PD-1, PDL-1, PDL-2, TIM-3, and CTLA-4 in skin lesions of patients that was confirmed by immunohistology where there was increased expression of PD-1, TIM-3, and CTLA-4 in both CD4+ and CD8+ T cell subsets. Moreover, PDL-1/PDL-2 ligands were increased on skin macrophages compared to healthy controls. The proportions PD1+, but not TIM-3 or CTLA-4 expressing T cells in the circulation were positively correlated with those in the lesions of the same patients, suggesting that PD-1 may regulate T cell function equally in both compartments. Blocking PD-1 signaling in circulating T cells enhanced their proliferative capacity and IFN-γ production, but not TNF-α secretion in response to L. braziliensis recall antigen challenge in vitro. While we previously showed a significant correlation between the accumulation of senescent CD8+CD45RA+CD27- T cells in the circulation and skin lesion size in the patients, there was no such correlation between the extent of PD-1 expression by circulating on T cells and the magnitude of skin lesions suggesting that exhausted-like T cells may not contribute to the cutaneous immunopathology. Nevertheless, we identified exhausted-like T cells in both skin lesions and in the blood. Targeting this population by PD-1 blockade may improve T cell function and thus accelerate parasite clearance that would reduce the cutaneous pathology in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil,Division of Medicine, University College London, London, United Kingdom
| | | | | | - Carla Baroni Cunha
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | | | | | | | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil,Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil,*Correspondence: Daniel Claudio Oliveira Gomes,
| |
Collapse
|
17
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
18
|
Novais FO, Nguyen BT, Scott P. Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. J Invest Dermatol 2020; 141:575-585. [PMID: 32738245 DOI: 10.1016/j.jid.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
In cutaneous leishmaniasis, the immune response is not only protective but also mediates immunopathology. We previously found that cytolytic CD8 T cells promote inflammatory responses that are difficult to treat with conventional therapies that target the parasite. Therefore, we hypothesized that inhibiting CD8 T-cell cytotoxicity would reduce disease severity in patients. IL-15 is a potential target for such a treatment because it is highly expressed in human patients with cutaneous leishmaniasis lesions and promotes granzyme B‒dependent CD8 T-cell cytotoxicity. Here we tested whether tofacitinib, which inhibits IL-15 signaling by blocking Jak3, might decrease CD8-dependent pathology. We found that tofacitinib reduced the expression of granzyme B by CD8 T cells in vitro and in vivo systemic and topical treatment, with tofacitinib protecting mice from developing severe cutaneous leishmaniasis lesions. Importantly, tofacitinib treatment did not alter T helper type 1 responses or parasite control. Collectively, our results suggest that host-directed therapies do not need to be limited to autoimmune disorders and that topical tofacitinib application should be considered a strategy for the treatment of cutaneous leishmaniasis disease in combination with antiparasitic drugs.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Current address: Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Ba T Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Milling S. Ageing dangerously; homing of senescent CD8 T cells in cutaneous Leishmaniasis. Immunology 2020; 159:355-356. [PMID: 32182636 DOI: 10.1111/imm.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Both CD8+ T cells and NK cells contribute to the immune response against the protozoan Leishmania parasite. Both are able to generate IFN-γ and both display cytotoxic features. These features may enable them to not only contribute to parasite clearance but also to cause immune-mediated pathology. This pathology is evident, for example, in the Leismania-induced skin lesions found in patients with cutaneous leismaniasis (CL). Here we highlight new data demonstrating that CD8+ T cells and NK cells in CL display a highly cytotoxic senescent phenotype, and that the senescent T cells play a major role in mediating skin pathology. This is the first demonstration that senescent CD8 T cells contribute to immunopathology in vivo.
Collapse
Affiliation(s)
- Simon Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Quinn KM, Linterman MA. Senescence blurs the line between innate and adaptive immune cells. Immunol Cell Biol 2020; 98:431-433. [PMID: 32406096 DOI: 10.1111/imcb.12341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023]
Abstract
In Covre et al. and Pereira et al., the authors demonstrate the parallels between senescent NK cells and senescent CD8 T cells, and formalise the mechanism by which senescent CD8 T cells become more NK cell-like, through the action of sestrins.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | |
Collapse
|