1
|
Huang P, Gao L, Guan J, Li Y, Jia Y, Zeng Z, Chen Y, Wang L, Li W, Wang Y, Yang B. IL7-IL7R Interaction Mediates Fibroblast-Driven Macrophage-to-Osteoclast Differentiation in Periodontitis. J Inflamm Res 2025; 18:6105-6122. [PMID: 40386183 PMCID: PMC12081953 DOI: 10.2147/jir.s524284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025] Open
Abstract
Aim To identify osteoclastogenic macrophage subsets and their regulatory mechanisms in periodontitis. Methods We integrated single-cell RNA sequencing datasets from human and murine periodontitis to construct a comprehensive macrophage and monocyte atlas. Employing functional enrichment, cell-cell communication, pseudotime, transcription factor, and machine learning analyses, we characterized and selected the specific macrophage subset involved in cell interactions. In vitro and in vivo experiments, including enzyme-linked immunosorbent assay, TRAP staining, micro-CT, qPCR, flow cytometry, and immunofluorescence staining, were performed to dissect the osteoclastogenic potential of specific macrophage subsets and to identify the key pathways. Results We discovered that the IL7R+ macrophage subset possesses significant osteoclast differentiation potential. Our findings indicate that the IL7/IL7R signaling axis facilitates osteoclast differentiation. Genes highly expressed in IL7R+ macrophages were identified as strong predictors for periodontitis by machine learning models. In vivo and in vitro experimental validation confirmed an increase in IL7R+ macrophages, along with their enhanced osteoclastogenic capacity. confirmed an increase in IL7R+ macrophages, along with their osteoclastogenic capacity. The inhibition of the IL7/IL7R signaling pathway was found to mitigate periodontitis progression by impeding osteoclast differentiation. Furthermore, fibroblasts were found to secret IL7 interacting with IL7 receptors on macrophages. Conclusion Our study identifies IL7R+ macrophages as potential osteoclast precursors in periodontitis. We demonstrate that the IL7/IL7R signaling pathway is a critical driver of osteoclast differentiation. Moreover, targeting IL7R is a potential therapeutic strategy to curb periodontitis bone resorption.
Collapse
Affiliation(s)
- Pengjie Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Li Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jiezhong Guan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yijiao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yibing Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zixiang Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yurun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, People’s Republic of China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Xu S, Han X, Yu Y, Qu C, Yang B, Shen B, Liu X. Deficiency of IL-7R attenuates abdominal aortic aneurysms in mice by inhibiting macrophage polarization towards M1 phenotype through the NF-κB pathway. Mol Med 2025; 31:138. [PMID: 40240976 PMCID: PMC12004661 DOI: 10.1186/s10020-025-01209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a common degenerative disease of the abdominal aorta, which can result in extremely high mortality owing to the rupture of the abdominal aorta. The activation of IL-7R has been shown to modulate the inflammatory responses, which play an important role in the progression of AAAs. However, the mechanism of IL-7/IL-7R axis in AAAs is still unclear. AIMS This study aims to investigate the effects of IL-7R on AAAs and the underlying mechanisms involved. METHODS Wild-type C57BL/6 and IL-7R knockout mice were used as experimental subjects. ELISA analysis, histological staining, western blotting and qPCR were performed to explore effects of IL-7R deficiency in the formation and development of elastase-induced AAAs. Transwell, CCK8, and immunofluorescence assays detected the migration and polarization of RAW264.7 macrophages in vitro. RESULT We demonstrated that IL-7R was elevated in mice with AAAs. Blocking IL-7R can inhibit the formation of AAAs and reduce aortic dilatation, elastic layer degradation, and inflammatory cell infiltration. Knockout of IL-7R suppressed the migration, infiltration and M1 polarization of macrophages. Moreover, inhibition of the NF-κB signaling pathway by BAY 11-7082 attenuated the macrophage-mediated inflammatory responses caused by IL-7R overexpression. CONCLUSION In short, this study showed that IL-7R promotes the infiltration and migration of macrophages by regulating M1 macrophage polarization, possibly in part via activation of the NF-κB pathway, which may be associated with the development of AAAs.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/genetics
- NF-kappa B/metabolism
- Mice
- Macrophages/metabolism
- Macrophages/immunology
- Signal Transduction
- Mice, Knockout
- Disease Models, Animal
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Receptors, Interleukin-7/deficiency
- Male
- Mice, Inbred C57BL
- RAW 264.7 Cells
- Phenotype
- Macrophage Activation
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P.R. China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, P.R. China.
| |
Collapse
|
3
|
Chen H, Lin H, Dai J. Causal associations of interleukins and osteoporosis: A genetic correlation study. Medicine (Baltimore) 2024; 103:e39036. [PMID: 39121248 PMCID: PMC11315551 DOI: 10.1097/md.0000000000039036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
The association between interleukins and osteoporosis has attracted much attention these days. However, the causal relationship between them is uncertain. Hence, this study performed a Mendelian randomization (MR) analysis to investigate the causal effects of interleukins on osteoporosis. The summary data for interleukins and osteoporosis came from 4 different genome-wide association studies. Significant and independent (P < 5 × 10-6; r2 < 0.001, 10,000 kbp) single-nucleotide polymorphisms were extracted for MR analysis. The inverse-variance weighted and other methods were used for MR analysis, while sensitivity analyses were conducted to test the reliability and stability. The positive causal effects of interleukin-7 on osteoporosis (odds ratio = 1.084; 95% confidence interval: 1.010-1.163; P = .025) were observed. No causal relationship was found between other interleukins and osteoporosis. In the sensitivity analysis, the results did not show the presence of pleiotropy and heterogeneity. Therefore, the results were robust for the MR analysis. This study revealed that interleukin-7 was positively related to osteoporosis and that other interleukins were not related to osteoporosis.
Collapse
Affiliation(s)
- Huihuang Chen
- Emergency Department, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Haibin Lin
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Jianhui Dai
- Department of Orthopedics, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| |
Collapse
|
4
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
5
|
Padovano C, Bianco SD, Sansico F, De Santis E, Tamiro F, Colucci M, Totti B, Di Iasio S, Bruno G, Panelli P, Miscio G, Mazza T, Giambra V. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis. Sci Rep 2023; 13:21199. [PMID: 38040752 PMCID: PMC10692129 DOI: 10.1038/s41598-023-48615-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.
Collapse
Affiliation(s)
- Costanzo Padovano
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Elisabetta De Santis
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Tamiro
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Mattia Colucci
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Beatrice Totti
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Serena Di Iasio
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Gaja Bruno
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Patrizio Panelli
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Vincenzo Giambra
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
6
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
7
|
Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol 2022; 13:975181. [PMID: 36278157 PMCID: PMC9585202 DOI: 10.3389/fphar.2022.975181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Melatonin is an important endogenous hormone that modulates homeostasis in the microenvironment. Recent studies have indicated that serum melatonin levels are closely associated with the occurrence and development of osteoporosis in postmenopausal women. Exogenous melatonin could also improve bone mass and increase skeletal strength. To determine the underlying mechanisms of melatonin in the prevention and treatment of postmenopausal osteoporosis, we performed this review to analyze the role of melatonin in bone metabolism according to its physiological functions. Serum melatonin is related to bone mass, the measurement of which is a potential method for the diagnosis of osteoporosis. Melatonin has a direct effect on bone remodeling by promoting osteogenesis and suppressing osteoclastogenesis. Melatonin also regulates the biological rhythm of bone tissue, which benefits its osteogenic effect. Additionally, melatonin participates in the modulation of the bone microenvironment. Melatonin attenuates the damage induced by oxidative stress and inflammation on osteoblasts and prevents osteolysis from reactive oxygen species and inflammatory factors. As an alternative drug for osteoporosis, melatonin can improve the gut ecology, remodel microbiota composition, regulate substance absorption and maintain metabolic balance, all of which are beneficial to the health of bone structure. In conclusion, our review systematically demonstrates the effects of melatonin on bone metabolism. Based on the evidence in this review, melatonin will play a more important role in the diagnosis, prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences Shenyang, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| |
Collapse
|
8
|
Meyer A, Parmar PJ, Shahrara S. Significance of IL-7 and IL-7R in RA and autoimmunity. Autoimmun Rev 2022; 21:103120. [PMID: 35595051 PMCID: PMC9987213 DOI: 10.1016/j.autrev.2022.103120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
While physiological levels of IL-7 are essential for T cell proliferation, survival and co-stimulation, its escalated concentration has been associated with autoimmune diseases such as Rheumatoid arthritis (RA). Expression of IL-7 and IL-7R in RA monocytes is linked to disease activity score and TNF transcription. TNF stimulation can modulate IL-7 secretion and IL-7R frequency in myeloid cells, however, only IL-7R transcription levels are downregulated in anti-TNF responsive patients. Elevated levels of IL-7 in RA synovial tissue and fluid are involved in attracting RA monocytes into the inflammatory joints and remodeling them into proinflammatory macrophages and mature osteoclasts. Further, IL-7 amplification of RA Th1 cell differentiation and IFNγ secretion, can directly prime myeloid IL-7R expression and thereby exacerbate IL-7-mediated joint inflammatory and erosive imprints. In parallel, IL-7 accentuates joint angiogenesis by expanding the production of proangiogenic factors from RA macrophages and endothelial cells. In preclinical models, blockade of IL-7 or IL-7R can effectively impair joint inflammation, osteoclast formation, and neovascularization primarily by impeding monocyte and endothelial cell infiltration as well as inhibition of pro-inflammatory macrophage and Th1/Th17 cell differentiation. In conclusion, disruption of IL-7/IL-7R signaling can uniquely intercept the crosstalk between RA myeloid and lymphoid cells in their ability to trigger neovascularization.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Prashant J Parmar
- Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA; Department of Medicine, Division of Rheumatology, the University of Illinois at Chicago, IL, USA.
| |
Collapse
|