1
|
Niveau C, Cettour-Cave M, Mouret S, Sosa Cuevas E, Pezet M, Roubinet B, Gil H, De Fraipont F, Landemarre L, Charles J, Saas P, Aspord C. MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma. Nat Commun 2025; 16:1083. [PMID: 39870647 PMCID: PMC11772620 DOI: 10.1038/s41467-025-56392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g., glycans) shape immune responses through lectin binding, and manipulate the metabolism of immune cells, including DCs to alter their function and escape immune surveillance. DC metabolic reprogramming could induce immune subversion and tumor immune escape. Here we explore metabolic features of human DC subsets (cDC2s, cDC1s, pDCs) in melanoma, at single cell level, using the flow cytometry-based SCENITH (Single-Cell ENergetIc metabolism by profiling Translation inHibition) method. We demonstrate that circulating and tumor-infiltrating DC subsets from melanoma patients are characterized by altered metabolism, which is linked to their activation status and profile of immune checkpoint expression. This altered metabolism influences their function and affects patient clinical outcome. Notably, melanoma tumor cells directly remodel the metabolic profile of DC subsets, in a glycan-dependent manner. Strikingly, modulation of the mTOR/AMPK-dependent metabolic pathways and/or the MCT1 lactate transporter rescue cDC2s and cDC1s from skewing by tumor-derived glycans, Sialyl-Tn antigen and Fucose, and restore anti-tumor T-cell fitness. Our findings thus open the way for appropriate tuning of metabolic pathways to rescue DCs from tumor hijacking and restore potent antitumor responses.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Mélanie Cettour-Cave
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Mylene Pezet
- Optical Microscopy and Flow Cytometry (MicroCell), Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | | | - Hugo Gil
- Department of Anatomopathology, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Florence De Fraipont
- Medical Unit of Molecular genetic (hereditary diseases and oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France.
| |
Collapse
|
2
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
3
|
Augustin RC, Cai WL, Luke JJ, Bao R. Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies. Clin Cancer Res 2024; 30:1724-1732. [PMID: 38236069 PMCID: PMC11062841 DOI: 10.1158/1078-0432.ccr-22-2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
The field of oncology has been transformed by immune checkpoint inhibitors (ICI) and other immune-based agents; however, many patients do not receive a durable benefit. While biomarker assessments from pivotal ICI trials have uncovered certain mechanisms of resistance, results thus far have only scraped the surface. Mechanisms of resistance are as complex as the tumor microenvironment (TME) itself, and the development of effective therapeutic strategies will only be possible by building accurate models of the tumor-immune interface. With advancement of multi-omic technologies, high-resolution characterization of the TME is now possible. In addition to sequencing of bulk tumor, single-cell transcriptomic, proteomic, and epigenomic data as well as T-cell receptor profiling can now be simultaneously measured and compared between responders and nonresponders to ICI. Spatial sequencing and imaging platforms have further expanded the dimensionality of existing technologies. Rapid advancements in computation and data sharing strategies enable development of biologically interpretable machine learning models to integrate data from high-resolution, multi-omic platforms. These models catalyze the identification of resistance mechanisms and predictors of benefit in ICI-treated patients, providing scientific foundation for novel clinical trials. Moving forward, we propose a framework by which in silico screening, functional validation, and clinical trial biomarker assessment can be used for the advancement of combined immunotherapy strategies.
Collapse
Affiliation(s)
- Ryan C. Augustin
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
- Mayo Clinic, Department of Medical Oncology, Rochester, MN
| | - Wesley L. Cai
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| | - Jason J. Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Liu P, Zhao L, Kroemer G, Kepp O. Conventional type 1 dendritic cells (cDC1) in cancer immunity. Biol Direct 2023; 18:71. [PMID: 37907944 PMCID: PMC10619282 DOI: 10.1186/s13062-023-00430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy, alone or in combination with conventional therapies, has revolutionized the landscape of antineoplastic treatments, with dendritic cells (DC) emerging as key orchestrators of anti-tumor immune responses. Among the distinct DC subsets, conventional type 1 dendritic cells (cDC1) have gained prominence due to their unique ability to cross-present antigens and activate cytotoxic T lymphocytes. This review summarizes the distinctive characteristics of cDC1, their pivotal role in anticancer immunity, and the potential applications of cDC1-based strategies in immunotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
| |
Collapse
|
5
|
Oljuskin T, Azodi N, Volpedo G, Bhattacharya P, Markle HL, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Nakhasi HL. Leishmania major centrin knock-out parasites reprogram tryptophan metabolism to induce a pro-inflammatory response. iScience 2023; 26:107593. [PMID: 37744403 PMCID: PMC10517402 DOI: 10.1016/j.isci.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.
Collapse
Affiliation(s)
- Timur Oljuskin
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hannah L. Markle
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Abstract
Dendritic cells (DCs) are innate immune cells that detect and process environmental signals and communicate them with T cells to bridge innate and adaptive immunity. Immune signals and microenvironmental cues shape the function of DC subsets in different contexts, which is associated with reprogramming of cellular metabolic pathways. In addition to integrating these extracellular cues to meet bioenergetic and biosynthetic demands, cellular metabolism interplays with immune signaling to shape DC-dependent immune responses. Emerging evidence indicates that lipid metabolism serves as a key regulator of DC responses. Here, we summarize the roles of fatty acid and cholesterol metabolism, as well as selective metabolites, in orchestrating the functions of DCs. Specifically, we highlight how different lipid metabolic programs, including de novo fatty acid synthesis, fatty acid β oxidation, lipid storage, and cholesterol efflux, influence DC function in different contexts. Further, we discuss how dysregulation of lipid metabolism shapes DC intracellular signaling and contributes to the impaired DC function in the tumor microenvironment. Finally, we conclude with a discussion on key future directions for the regulation of DC biology by lipid metabolism. Insights into the connections between lipid metabolism and DC functional specialization may facilitate the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Zhiyuan You
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol 2023; 13:1052478. [PMID: 36817103 PMCID: PMC9932337 DOI: 10.3389/fmicb.2022.1052478] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
Leishmaniasis, one of the most neglected tropical diseases (NTDs), is the third most important vector-borne disease worldwide. This disease has a global impact and severity of the infection and is greatest in the Middle East. The agent of infection is a protozoan parasite of the genus, Leishmania, and is generally transmitted by blood-sucking female sandflies. In humans, there are three clinical forms of infection: (1) cutaneous (CL), (2) mucocutaneous (ML), and (3) visceral leishmaniasis (VL). This review aims to discuss the current epidemiological status of leishmaniasis in Saudi Arabia, Iraq, Syria, and Yemen with a consideration of treatment options. The elevated risk of leishmaniasis is influenced by the transmission of the disease across endemic countries into neighboring non-infected regions.
Collapse
Affiliation(s)
| | - David R. Harris
- Department of Biology, Tuskegee University, Tuskegee, AL, United States
| | | | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | - Todd Young
- Department of Biology, Howard University, Washington, DC, United States
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington, DC, United States
| |
Collapse
|
8
|
Cell signaling activation and extracellular matrix remodeling underpin glioma tumor microenvironment heterogeneity and organization. Cell Oncol 2022; 46:589-602. [PMID: 36567397 DOI: 10.1007/s13402-022-00763-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.
Collapse
|