1
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, V: deciphering allergenicity. FRONTIERS IN ALLERGY 2024; 5:1454292. [PMID: 39552700 PMCID: PMC11565521 DOI: 10.3389/falgy.2024.1454292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are operative agents of allergy. It derived from observations that allergens are molecular elements of acarians or acarian foodstuffs. A corollary of The Hypothesis provides how acarian dietary elements are selected as allergens; namely, a pattern recognition receptor native to the acarian digestive tract complexes with dietary molecules problematic to the acarian. By virtue of its interspecies operability, the receptor then enables not only removal of the dietary elements by the acarian immune system, but also-should such a complex be inoculated into a human-production of an element-specific IgE. Because pattern recognition receptors bind to molecules problematic to the organism from which the receptors originate, it follows that molecules targeted by adaptive IgE, i.e., allergens, must be problematic to acarians. This claim is supported by evidence that host organisms, when infested by acarians, upregulate representative members of allergenic molecular families. Appreciation of the relationship between allergens and acarians provides insight well beyond allergy, shedding light also on the anti-acarian defenses of many living things, especially humans.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Galili U. Self-Tumor Antigens in Solid Tumors Turned into Vaccines by α-gal Micelle Immunotherapy. Pharmaceutics 2024; 16:1263. [PMID: 39458595 PMCID: PMC11510312 DOI: 10.3390/pharmaceutics16101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in situ targeting of tumor cells for robust uptake by APCs, without the need to identify and characterize the TAs. This is feasible by the intra-tumoral injection of α-gal micelles comprised of glycolipids presenting the carbohydrate-antigen "α-gal epitope" (Galα1-3Galβ1-4GlcNAc-R). Humans produce a natural antibody called "anti-Gal" (constituting ~1% of immunoglobulins), which binds to α-gal epitopes. Tumor-injected α-gal micelles spontaneously insert into tumor cell membranes, so that multiple α-gal epitopes are presented on tumor cells. Anti-Gal binding to these epitopes activates the complement system, resulting in the killing of tumor cells, and the recruitment of multiple APCs (dendritic cells and macrophages) into treated tumors by the chemotactic complement cleavage peptides C5a and C3a. In this process of converting the treated tumor into a personalized TA vaccine, the recruited APC phagocytose anti-Gal opsonized tumor cells and cell membranes, process the internalized TAs and transport them to regional lymph-nodes. TA peptides presented on APCs activate TA-specific T cells to proliferate and destroy the metastatic tumor cells presenting the TAs. Studies in anti-Gal-producing mice demonstrated the induction of effective protection against distant metastases of the highly tumorigenic B16 melanoma following injection of natural and synthetic α-gal micelles into primary tumors. This treatment was further found to synergize with checkpoint inhibitor therapy by the anti-PD1 antibody. Phase-1 clinical trials indicated that α-gal micelle immunotherapy is safe and can induce the infiltration of CD4+ and CD8+ T cells into untreated distant metastases. It is suggested that, in addition to converting treated metastases into an autologous TA vaccine, this treatment should be considered as a neoadjuvant therapy, administering α-gal micelles into primary tumors immediately following their detection. Such an immunotherapy will convert tumors into a personalized anti-TA vaccine for the period prior to their resection.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, IV: revisiting the role of hygiene in allergy. FRONTIERS IN ALLERGY 2024; 5:1415124. [PMID: 39055609 PMCID: PMC11270752 DOI: 10.3389/falgy.2024.1415124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Allergy and its manifestations were first appreciated in the 1870 s. Today, the mechanism by which specific substances elicit allergic reactions remains poorly understood. This is problematic from a healthcare perspective because the prevalence of allergic disease and its societal costs are substantial. Regarding mechanistic understanding of allergy, a new proposal, The Acari Hypothesis, has been forwarded. The Hypothesis, borne from consideration of alpha-gal syndrome, postulates that acarians, i.e., mites and ticks, are operative agents of allergy. By way of their pathogenic payloads and salivary pattern recognition receptor(s), acarians potentiate in human hosts the generation of IgE against acarian dietary elements. Those elements account for most, if not all, known human allergens. Inasmuch as acarian-human interactions occur on human epithelial surfaces, it is to be expected factors that influence the presence and/or operation of acarians on those surfaces influence the expression of allergic diseases. In this report, it is proposed that two adaptations of catarrhine primates, i.e., Old World monkeys, apes and humans, evolved to deter acarian species: firstly, the expansion of eccrine glands across the entirety of body surface area, and, secondly, the secretion of sweat by those glands. Contemporary hygienic practices that reduce and/or disrupt the operation of eccrine glands are likely responsible for the increase in allergic disease seen today.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Iemitsu K, Sakai R, Maeda A, Gadomska K, Kogata S, Yasufuku D, Matsui J, Masahata K, Kamiyama M, Eguchi H, Matsumura S, Kakuta Y, Nagashima H, Okuyama H, Miyagawa S. The hybrid CL-SP-D molecule has the potential to regulate xenogeneic rejection by human neutrophils more efficiently than CD47. Transpl Immunol 2024; 84:102020. [PMID: 38452982 DOI: 10.1016/j.trim.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Innate immunity plays a vital role in xenotransplantation. A CD47 molecule, binding to the SIRPα expressed on monocyte/macrophage cells, can suppress cytotoxicity. Particularly, the SIRPα contains ITIM, which delivers a negative signal. Our previous study demonstrated that the binding between CL-P1 and surfactant protein-D hybrid (CL-SP-D) with SIRPα regulates macrophages' phagocytic activity. In this study, we examined the effects of human CD47 and CL-SP-D expression on the inhibition of xenograft rejection by neutrophils in swine endothelial cells (SECs). METHODS We first examined SIRPα expression on HL-60 cells, a neutrophil-like cell line, and neutrophils isolated from peripheral blood. CD47-expressing SECs or CL-SP-D-expressing SECs were generated through plasmid transfection. Subsequently, these SECs were co-cultured with HL-60 cells or neutrophils. After co-culture, the degree of cytotoxicity was calculated using the WST-8 assay. The suppressive function of CL-SP-D on neutrophils was subsequently examined, and the results were compared with those of CD47 using naïve SECs as controls. Additionally, we assessed ROS production and neutrophil NETosis. RESULTS In initial experiments, the expression of SIRPα on HL-60 and neutrophils was confirmed. Exposure to CL-SP-D significantly suppressed the cytotoxicity in HL-60 (p = 0.0038) and neutrophils (p = 0.00003). Furthermore, engagement with CD47 showed a suppressive effect on neutrophils obtained from peripheral blood (p = 0.0236) but not on HL-60 (p = 0.4244). The results of the ROS assays also indicated a significant downregulation of SEC by CD47 (p = 0.0077) or CL-SP-D (p = 0.0018). Additionally, the suppression of NETosis was confirmed (p = 0.0125) in neutrophils co-cultured with S/CL-SP-D. CONCLUSION These results indicate that CL-SP-D is highly effective on neutrophils in xenogeneic rejection. Furthermore, CL-SP-D was more effective than CD47 at inhibiting neutrophil-mediated xenograft rejection.
Collapse
Affiliation(s)
- Keigo Iemitsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Rieko Sakai
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katarzyna Gadomska
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daiki Yasufuku
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsui
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
5
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
6
|
Abal M, Balouz V, Lopez R, Giorgi ME, Marino C, Cruz CV, Altcheh J, Buscaglia CA. An α-Gal antigenic surrogate as a biomarker of treatment evaluation in Trypanosoma cruzi-infected children. A retrospective cohort study. PLoS Negl Trop Dis 2024; 18:e0011910. [PMID: 38236916 PMCID: PMC10826959 DOI: 10.1371/journal.pntd.0011910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Proper evaluation of therapeutic responses in Chagas disease is hampered by the prolonged persistence of antibodies to Trypanosoma cruzi measured by conventional serological tests and by the lack of sensitivity of parasitological tests. Previous studies indicated that tGPI-mucins, an α-Gal (α-d-Galp(1→3)-β-d-Galp(1→4)-d-GlcNAc)-rich fraction obtained from T. cruzi trypomastigotes surface coat, elicit a strong and protective antibody response in infected individuals, which disappears soon after successful treatment. The cost and technical difficulties associated with tGPI-mucins preparation, however, preclude its routine implementation in clinical settings. METHODS/PRINCIPLE FINDINGS We herein developed a neoglycoprotein consisting of a BSA scaffold decorated with several units of a synthetic α-Gal antigenic surrogate (α-d-Galp(1→3)-β-d-Galp(1→4)-β-d-Glcp). Serological responses to this reagent, termed NGP-Tri, were monitored by means of an in-house enzyme-linked immunosorbent assay (α-Gal-ELISA) in a cohort of 82 T. cruzi-infected and Benznidazole- or Nifurtimox-treated children (3 days to 16 years-old). This cohort was split into 3 groups based on the age of patients at the time of treatment initiation: Group 1 comprised 24 babies (3 days to 5 months-old; median = 26 days-old), Group 2 comprised 31 children (7 months to 3 years-old; median = 1.0-year-old) and Group 3 comprised 26 patients (3 to 16 years-old; median = 8.4 years-old). A second, control cohort (Group 4) included 39 non-infected infants (3 days to 5 months-old; median = 31 days-old) born to T. cruzi-infected mothers. Despite its suboptimal seroprevalence (58.4%), α-Gal-ELISA yielded shorter median time values of negativization (23 months [IC 95% 7 to 36 months] vs 60 months [IC 95% 15 to 83 months]; p = 0.0016) and higher rate of patient negative seroconversion (89.2% vs 43.2%, p < 0.005) as compared to conventional serological methods. The same effect was verified for every Group, when analyzed separately. Most remarkably, 14 out of 24 (58.3%) patients from Group 3 achieved negative seroconversion for α-Gal-ELISA while none of them were able to negativize for conventional serology. Detailed analysis of patients showing unconventional serological responses suggested that, in addition to providing a novel tool to shorten follow-up periods after chemotherapy, the α-Gal-ELISA may assist in other diagnostic needs in pediatric Chagas disease. CONCLUSIONS/SIGNIFICANCE The tools evaluated here provide the cornerstone for the development of an efficacious, reliable, and straightforward post-therapeutic marker for pediatric Chagas disease.
Collapse
Affiliation(s)
- Manuel Abal
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| | - Rosana Lopez
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - M. Eugenia Giorgi
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - Carla Marino
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), and CONICET, Buenos Aires, Argentina
| | - Cintia V. Cruz
- Servicio de Parasitología-Chagas, Hospital de Niños ’Dr Ricardo Gutierrez’, and Instituto Multidisciplinario en Investigaciones Pediátricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
- Mahidol Oxford Research Unit (MORU), Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Jaime Altcheh
- Servicio de Parasitología-Chagas, Hospital de Niños ’Dr Ricardo Gutierrez’, and Instituto Multidisciplinario en Investigaciones Pediátricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
- Fundación para el estudio de las infecciones parasitarias y enfermedad de Chagas (FIPEC foundation), Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| |
Collapse
|
7
|
Galili U. Antibody production and tolerance to the α-gal epitope as models for understanding and preventing the immune response to incompatible ABO carbohydrate antigens and for α-gal therapies. Front Mol Biosci 2023; 10:1209974. [PMID: 37449060 PMCID: PMC10338101 DOI: 10.3389/fmolb.2023.1209974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
This review describes the significance of the α-gal epitope (Galα-3Galβ1-4GlcNAc-R) as the core of human blood-group A and B antigens (A and B antigens), determines in mouse models the principles underlying the immune response to these antigens, and suggests future strategies for the induction of immune tolerance to incompatible A and B antigens in human allografts. Carbohydrate antigens, such as ABO antigens and the α-gal epitope, differ from protein antigens in that they do not interact with T cells, but B cells interacting with them require T-cell help for their activation. The α-gal epitope is the core of both A and B antigens and is the ligand of the natural anti-Gal antibody, which is abundant in all humans. In A and O individuals, anti-Gal clones (called anti-Gal/B) comprise >85% of the so-called anti-B activity and bind to the B antigen in facets that do not include fucose-linked α1-2 to the core α-gal. As many as 1% of B cells are anti-Gal B cells. Activation of quiescent anti-Gal B cells upon exposure to α-gal epitopes on xenografts and some protozoa can increase the titer of anti-Gal by 100-fold. α1,3-Galactosyltransferase knockout (GT-KO) mice lack α-gal epitopes and can produce anti-Gal. These mice simulate human recipients of ABO-incompatible human allografts. Exposure for 2-4 weeks of naïve and memory mouse anti-Gal B cells to α-gal epitopes in the heterotopically grafted wild-type (WT) mouse heart results in the elimination of these cells and immune tolerance to this epitope. Shorter exposures of 7 days of anti-Gal B cells to α-gal epitopes in the WT heart result in the production of accommodating anti-Gal antibodies that bind to α-gal epitopes but do not lyse cells or reject the graft. Tolerance to α-gal epitopes due to the elimination of naïve and memory anti-Gal B cells can be further induced by 2 weeks in vivo exposure to WT lymphocytes or autologous lymphocytes engineered to present α-gal epitopes by transduction of the α1,3-galactosyltransferase gene. These mouse studies suggest that autologous human lymphocytes similarly engineered to present the A or B antigen may induce corresponding tolerance in recipients of ABO-incompatible allografts. The review further summarizes experimental works demonstrating the efficacy of α-gal therapies in amplifying anti-viral and anti-tumor immune-protection and regeneration of injured tissues.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical College, Chicago, IL, United States
| |
Collapse
|