1
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
2
|
Muacevic A, Adler JR. FOXN1 Gene Considerations in Severe Combined Immunodeficiency Treatment in Children. Cureus 2022; 14:e32040. [PMID: 36600823 PMCID: PMC9800850 DOI: 10.7759/cureus.32040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Forkheadbox N1 (FOXN1) gene mutation in humans is a rare cause of thymic hypoplasia and T cell immunodeficiency. This gene is the master transcriptional regulator of thymic epithelial cells and disruptions have been described in consequence to a variety of antepartum complications. FOXN1 mutation-mediated immune deficiency is typically associated with severe combined immunodeficiency and alopecia universalis (SCID/NUDE phenotypes) with homozygous alterations in human animal models. Less common, however, FOXN1 alterations can occur in a heterozygous form and provide a distinct phenotype of severe combined immunodeficiency (SCID) without alopecia. Here, we present one such case of a Caucasian child born with heterozygous FOXN1 mutation, first presenting with undetectable T cell levels at newborn screen. He was confirmed to have FOXN1 immunodeficiency in the heterozygous form through genetic testing. Early identification and initiation of appropriate interventions are crucial to reduce mortality from opportunistic pathogens associated with immunodeficiency. Furthermore, we need to appreciate the less common presentations of established diseases among young patients.
Collapse
|
3
|
Szwarc MM, Hai L, Maurya VK, Rajapakshe K, Perera D, Ittmann MM, Mo Q, Lin Y, Bettini ML, Coarfa C, Lydon JP. Histopathologic and transcriptomic phenotypes of a conditional RANKL transgenic mouse thymus. Cytokine 2022; 160:156022. [PMID: 36099756 DOI: 10.1016/j.cyto.2022.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular & Cellular Biology, United States
| | - Lan Hai
- Department of Molecular & Cellular Biology, United States
| | - Vineet K Maurya
- Department of Molecular & Cellular Biology, United States
| | | | - Dimuthu Perera
- Department of Molecular & Cellular Biology, United States
| | - Michael M Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Yong Lin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Matthew L Bettini
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, United States
| | - John P Lydon
- Department of Molecular & Cellular Biology, United States.
| |
Collapse
|
4
|
Fregona V, Bayet M, Gerby B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers (Basel) 2021; 13:cancers13215511. [PMID: 34771671 PMCID: PMC8582707 DOI: 10.3390/cancers13215511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is a heterogeneous disease characterized by a diversity of genetic alterations, following a sophisticated and controversial organization. In this review, we present and discuss the concepts exploring the cellular, molecular and functional heterogeneity of leukemic cells. We also review the emerging evidence indicating that cell plasticity and oncogene-induced reprogramming should be considered at the biological and clinical levels as critical mechanisms for identifying and targeting leukemia-initiating cells. Abstract Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions.
Collapse
|
5
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Grossman Z. Immunological Paradigms, Mechanisms, and Models: Conceptual Understanding Is a Prerequisite to Effective Modeling. Front Immunol 2019; 10:2522. [PMID: 31749803 PMCID: PMC6848063 DOI: 10.3389/fimmu.2019.02522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Most mathematical models that describe the individual or collective actions of cells aim at creating faithful representations of limited sets of data in a self-consistent manner. Consistency with relevant physiological rules pertaining to the greater picture is rarely imposed. By themselves, such models have limited predictive or even explanatory value, contrary to standard claims. Here I try to show that a more critical examination of currently held paradigms is necessary and could potentially lead to models that pass the test of time. In considering the evolution of paradigms over the past decades I focus on the “smart surveillance” theory of how T cells can respond differentially, individually and collectively, to both self- and foreign antigens depending on various “contextual” parameters. The overall perspective is that physiological messages to cells are encoded not only in the biochemical connections of signaling molecules to the cellular machinery but also in the magnitude, kinetics, and in the time- and space-contingencies, of sets of stimuli. By rationalizing the feasibility of subthreshold interactions, the “dynamic tuning hypothesis,” a central component of the theory, set the ground for further theoretical and experimental explorations of dynamically regulated immune tolerance, homeostasis and diversity, and of the notion that lymphocytes participate in nonclassical physiological functions. Some of these efforts are reviewed. Another focus of this review is the concomitant regulation of immune activation and homeostasis through the operation of a feedback mechanism controlling the balance between renewal and differentiation of activated cells. Different perspectives on the nature and regulation of chronic immune activation in HIV infection have led to conflicting models of HIV pathogenesis—a major area of research for theoretical immunologists over almost three decades—and can have profound impact on ongoing HIV cure strategies. Altogether, this critical review is intended to constructively influence the outlook of prospective model builders and of interested immunologists on the state of the art and to encourage conceptual work.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochem Soc Trans 2019; 47:1077-1089. [DOI: 10.1042/bst20180414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Abstract
In T cell development, a pivotal decision-making stage, termed β-selection, integrates a TCRβ checkpoint to coordinate survival, proliferation and differentiation to an αβ T cell. Here, we review how transcriptional regulation coordinates fate determination in early T cell development to enable β-selection. Errors in this transcription control can trigger T cell acute lymphoblastic leukaemia. We describe how the β-selection checkpoint goes awry in leukaemic transformation.
Collapse
|
8
|
Ballesteros-Arias L, Silva JG, Paiva RA, Carbonetto B, Faísca P, Martins VC. T Cell Acute Lymphoblastic Leukemia as a Consequence of Thymus Autonomy. THE JOURNAL OF IMMUNOLOGY 2019; 202:1137-1144. [DOI: 10.4049/jimmunol.1801373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/02/2018] [Indexed: 01/22/2023]
|
9
|
Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J 2018; 285:4565-4574. [DOI: 10.1111/febs.14651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rafael A. Paiva
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Camila V. Ramos
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Vera C. Martins
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
10
|
Ginn SL, McCormack MP, Alexander IE. Thymocyte self-renewal and oncogenic risk in immunodeficient mouse models: relevance for human gene therapy clinical trials targeting haematopoietic stem cell populations? Mamm Genome 2018; 29:771-776. [PMID: 30182300 DOI: 10.1007/s00335-018-9780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022]
Abstract
Emerging evidence indicates that thymocyte self-renewal induced by progenitor deprivation carries an oncogenic risk that is modulated by intra-thymic competition from differentiation-committed cells. Here we discuss formative studies demonstrating that, in mice, early thymocytes acquire self-renewing potential when thymic progenitor supply is sub-physiological and the importance of cellular competition with this at-risk cell population to prevent lymphoid malignancy. We also consider the possibility that increased thymic residency time, established under conditions of limited cellular competition, may have contributed to oncogenesis observed in early SCID-X1 trials when combined with insertional activation of proto-oncogenes such as LMO2.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.
| | - Matthew P McCormack
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Locked Bag 2023, Wentworthville, NSW, 2145, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
11
|
Implications for thymus growth in childhood: histogenesis of cortex and medulla. Anat Sci Int 2018; 94:111-118. [PMID: 30155680 DOI: 10.1007/s12565-018-0456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
The increase in autoimmune diseases in recent years has drawn attention back to the thymus, with new approaches to improve and/or restore immune function being investigated. As the primary lymphoid organ responsible for functional T cell development, studies on the pre-/post-natal development of this organ and T lymphocytes in human and other species are of special interest. During our screening studies we observed structures that had not been described or mentioned previously, and named them "epitheliostromal sheaths". Associated with these unique structures were also small attached lobules (possibly reflecting the maturational stages of thymic lobules), which the authors consider as markers of histogenesis and the growth of the organ during early childhood; these findings are thus presented to researchers in this field. Approximately 1000 sections prepared from infantile thymic tissues of partial biopsy specimens were immunostained and examined. Specimens were taken from ten patients (with informed consent) in the age range of 4-9 years who underwent surgery due to congenital cardiovascular anomalies but were otherwise normal. Digital images of interest were captured to describe them in detail. Determining the immunophenotype of the compartments in these newly developing lobules assisted us greatly in defining compartments and their growth order. In summary, our findings suggest a niche-based thymus growth mechanism during childhood. We presented our findings, hoping to provide additional insight to researchers aiming to restore thymus function in adulthood and improve its immunological functions.
Collapse
|
12
|
Novickij V, Zinkevičienė A, Valiulis J, Švedienė J, Paškevičius A, Lastauskienė E, Markovskaja S, Novickij J, Girkontaitė I. Different permeabilization patterns of splenocytes and thymocytes to combination of pulsed electric and magnetic field treatments. Bioelectrochemistry 2018; 122:183-190. [DOI: 10.1016/j.bioelechem.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|
13
|
Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: Implication for the robust innate defense mechanisms of teleosts. Sci Rep 2017; 7:7536. [PMID: 28790360 PMCID: PMC5548773 DOI: 10.1038/s41598-017-08000-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
rag1−/− zebrafish have been employed in immunological research as a useful immunodeficient vertebrate model, but with only fragmentary evidence for the lack of functional adaptive immunity. rag1-null zebrafish exhibit differences from their human and murine counterparts in that they can be maintained without any specific pathogen-free conditions. To define the immunodeficient status of rag1−/− zebrafish, we obtained further functional evidence on T- and B-cell deficiency in the fish at the protein, cellular, and organism levels. Our developed microscale assays provided evidence that rag1−/− fish do not possess serum IgM protein, that they do not achieve specific protection even after vaccination, and that they cannot induce antigen-specific CTL activity. The mortality rate in non-vaccinated fish suggests that rag1−/− fish possess innate protection equivalent to that of rag1+/− fish. Furthermore, poly(I:C)-induced immune responses revealed that the organ that controls anti-viral immunity is shifted from the spleen to the hepatopancreas due to the absence of T- and B-cell function, implying that immune homeostasis may change to an underside mode in rag-null fish. These findings suggest that the teleost relies heavily on innate immunity. Thus, this model could better highlight innate immunity in animals that lack adaptive immunity than mouse models.
Collapse
|
14
|
Boehm T. Form follows function, function follows form: how lymphoid tissues enable and constrain immune reactions. Immunol Rev 2016; 271:4-9. [PMID: 27088903 DOI: 10.1111/imr.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|