1
|
Yan Y, Zhang Y, Tang X, Zhuoya Z, Linyu G, Lingyun S. Vγ6 +γδT Cells Participate in Lupus Nephritis in MRL/Lpr Mice. Int J Rheum Dis 2025; 28:e70040. [PMID: 39740062 DOI: 10.1111/1756-185x.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND γδT cells have been implicated in the pathogenesis of autoimmune diseases. The study aims to investigate the abundance of γδT cells in MRL/lpr mice. METHODS MRL/lpr mice were used as lupus models, while C3H/HeJ mice served as normal controls. The abundance of γδT cells in different organs was examined by flow cytometry. Plasma double-stranded DNA antibody levels, blood urea nitrogen, creatinine, and urinary protein levels were measured. Renal histopathology was observed via H&E staining. The correlations between the abundance of γδT cells and lupus manifestations were analyzed. RESULTS Compared with C3H/HeJ mice, the number of γδT cells and Vγ6+γδT cell subset in the peripheral blood of MRL/lpr mice was significantly reduced. However, in the kidney, the number of γδT cells and Vγ6+γδT cell subset was significantly increased. Additionally, the number of Vγ6+γδT cells in the kidney was positively correlated with the urinary protein level. The number of IFN-γ+Vγ6+γδT cells in the kidney was positively correlated with urinary protein level. CONCLUSION In MRL/lpr mice, it is likely that peripheral γδT cells, especially the Vγ6 subset, infiltrate the kidney and secrete IFN-γ, which contributes to the development of lupus nephritis.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhang Zhuoya
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Geng Linyu
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sun Lingyun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang Y, Tsukamoto Y, Hori M, Iha H. Disulfidptosis: A Novel Prognostic Criterion and Potential Treatment Strategy for Diffuse Large B-Cell Lymphoma (DLBCL). Int J Mol Sci 2024; 25:7156. [PMID: 39000261 PMCID: PMC11241771 DOI: 10.3390/ijms25137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL), with its intrinsic genetic and epigenetic heterogeneity, exhibits significantly variable clinical outcomes among patients treated with the current standard regimen. Disulfidptosis, a novel form of regulatory cell death triggered by disulfide stress, is characterized by the collapse of cytoskeleton proteins and F-actin due to intracellular accumulation of disulfides. We investigated the expression variations of disulfidptosis-related genes (DRGs) in DLBCL using two publicly available gene expression datasets. The initial analysis of DRGs in DLBCL (GSE12453) revealed differences in gene expression patterns between various normal B cells and DLBCL. Subsequent analysis (GSE31312) identified DRGs strongly associated with prognostic outcomes, revealing eight characteristic DRGs (CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM). Based on these DRGs, DLBCL patients were stratified into three groups, indicating that (1) DRGs can predict prognosis, and (2) DRGs can help identify novel therapeutic candidates. This study underscores the significant role of DRGs in various biological processes within DLBCL. Assessing the risk scores of individual DRGs allows for more precise stratification of prognosis and treatment strategies for DLBCL patients, thereby enhancing the effectiveness of clinical practice.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama 309-1703, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| |
Collapse
|
3
|
Zhu W, Xu X, Nagarajan V, Guo J, Peng Z, Zhang A, Liu J, Mattapallil MJ, Jittayasothorn Y, Horai R, Leger AJS, Caspi RR. TLR2 Supports γδ T cell IL-17A Response to ocular surface commensals by Metabolic Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587519. [PMID: 38712203 PMCID: PMC11071315 DOI: 10.1101/2024.04.01.587519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis (C. mast) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast-responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells.
Collapse
Affiliation(s)
- Wenjie Zhu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Xiaoyan Xu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | | | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zixuan Peng
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Amy Zhang
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Jie Liu
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
- Current address: Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114
| | | | | | - Reiko Horai
- Laboratory of Immunology, NEI, NIH Bethesda MD 20892, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, Departments of Ophthalmology and Immunology, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
4
|
Song Y, Li Y, Hu W, Li F, Sheng H, Huang C, Gou X, Hou J, Zheng J, Xiao Y. Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. BURNS & TRAUMA 2024; 12:tkad054. [PMID: 38444636 PMCID: PMC10910847 DOI: 10.1093/burnst/tkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 03/07/2024]
Abstract
Background The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.
Collapse
Affiliation(s)
- Yajun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Wengang Hu
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing, 404031, China
| | - Hao Sheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, The Army Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
5
|
Xie Q, Lu J, Cui X. Effects of therapeutic hypercapnia on the expression and function of γδT cells in transplanted lungs in rats. Immun Inflamm Dis 2024; 12:e1220. [PMID: 38506409 PMCID: PMC10953205 DOI: 10.1002/iid3.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVE To investigate the effect of therapeutic hypercapnia on the expression and function of gamma delta T (γδ T) cells during ischemia-reperfusion injury (IRI) after lung transplantation. METHODS We randomly divided male Wistar rats into three groups (n = 6 in each group), the control group (group N), the IRI group (group I), and the therapeutic hypercapnia group (group H). We then assessed pulmonary edema, neutrophil infiltration, wet-to-dry (W/D) weight ratio, and microscopic histopathology and separately measured the levels of γδT cell surface antigen (TCR) and Interleukin-17 (IL-17) using flow cytometry and enzyme-linked immunosorbent assays (ELISAs). RESULTS The infiltration of neutrophils and the expression of TCR and IL-17 were significantly increased in the I group compared to the control, and the biopsy edema in group I was more severe. Arterial partial pressure of oxygen (PaO2) was decreased after reperfusion in group I compared with the control group. W/D weight ratio, neutrophil infiltration, and the expression of TCR and IL-17 decreased drastically in the H group compared to the I group. CONCLUSION Our findings suggest that γδ T lymphocytes were directly involved in lung injury. In addition, therapeutic hypercapnia effectively reduced the expression of γδ T cells and IL-17, and this has the potential to become a treatment strategy for IRI and an intervention to improve lung function.
Collapse
Affiliation(s)
- Qing Xie
- Department of Anesthesia, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jia Lu
- Department of Anesthesia, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - XiaoGuang Cui
- Department of AnesthesiaFirst Affiliated Hospital of Hainan Medical CollegeHaikouHainanChina
| |
Collapse
|
6
|
Zhao Y, Wang H, Jin L, Zhang Z, Liu L, Zhou M, Zhang X, Zhang L. Targeting fusion proteins of the interleukin family: A promising new strategy for the treatment of autoinflammatory diseases. Eur J Pharm Sci 2024; 192:106647. [PMID: 37984595 DOI: 10.1016/j.ejps.2023.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
As a means of communication between immune cells and non-immune cells, Interleukins (ILs) has the main functions of stimulating the proliferation and activation of inflammatory immune cells such as dendritic cells and lymphocytes, promote the development of blood cells and so on. However, dysregulation of ILs expression is a major feature of autoinflammatory diseases. The drugs targeting ILs or IL-like biologics have played an important role in the clinical treatment of autoinflammatory diseases. Nevertheless, the widespread use of IL products may result in significant off-target adverse reactions. Thus, there is a clear need to develop next-generation ILs products in the biomedical field. Fusion proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Over the last 30 years, there has been increasing interest in the use of fusion protein technology for developing anti-inflammatory drugs. In comparison to single-target drugs, fusion proteins, as multiple targets drugs, have the ability to enhance the cytokine therapeutic index, resulting in improved efficacy over classical drugs. The strategy of preparing ILs or their receptors as fusion proteins is increasingly used in the treatment of autoimmune and chronic inflammation. This review focuses on the efficacy of several fusion protein drugs developed with ILs or their receptors in the treatment of autoinflammatory diseases, in order to illustrate the prospects of this new technology as an anti-inflammatory drug development protocol in the future.
Collapse
Affiliation(s)
- Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui 230032, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Yang T, Barros-Martins J, Wang Z, Wencker M, Zhang J, Smout J, Gambhir P, Janssen A, Schimrock A, Georgiev H, León-Lara X, Weiss S, Huehn J, Prinz I, Krueger A, Foerster R, Walzer T, Ravens S. RORγt + c-Maf + Vγ4 + γδ T cells are generated in the adult thymus but do not reach the periphery. Cell Rep 2023; 42:113230. [PMID: 37815917 DOI: 10.1016/j.celrep.2023.113230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ziqing Wang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Jiang Zhang
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Justine Smout
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany
| | - Prerna Gambhir
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ximena León-Lara
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Hamburg-Eppendorf, 20246 Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Krueger
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Reinhold Foerster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Shi N, Zhang Y, Liang Y, Chen Y, Huang Y, Xia X, Liu Z, Li Z, Huang F. RNA-Seq and ATAC-Seq analyses reveal a global transcriptional and chromatin accessibility profiling of γδ T17 differentiation from mouse spleen. Immunobiology 2023; 228:152461. [PMID: 37515879 DOI: 10.1016/j.imbio.2023.152461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/31/2023]
Abstract
IL-17A-producing γδ T cells (γδ T17) are known to play important roles in various autoimmune diseases. However, the molecular mechanisms of γδ T17 differentiation and their functions have not been clarified yet. Here, we sorted IL-17A+ Vγ4, IL-17A- Vγ4, and Vγ1 subsets from mouse spleen by in vitro priming of γδ T17 cells and investigated their differentially expressed genes (DEGs) and differentially accessible regions (DARs) using RNA-seq and ATAC-seq, respectively. Our results showed that DEGs-1 (upregulated genes: 677 and downregulated genes: 821) and DEGs-2 (upregulated genes: 1188 and downregulated genes: 1252) were most closely related to the function and differentiation of peripheral γδ T17. We identified key modules and MCODEs involved in the control of IL-17A+ Vγ4, IL-17A- Vγ4, and Vγ1 subsets using the WGCNA and Metascape analysis. Furthermore, 26 key transcription factors were enriched in three subsets, which contributed to deciphering the potential molecular mechanism driving γδ T17 differentiation. Simultaneously, we conducted chromatin accessibility profiling under γδ T17 differentiation by ATAC-seq. The top six candidate genes were screened for γδ T17 differentiation and function by integrating RNA-seq and ATAC-seq analysis, and the results were further confirmed using RT-qPCR, flow cytometry, and western blot. In addition, the association analysis of candidate genes with the RNA-seq database of psoriasis was performed to elucidate the functional relationship. Our findings provided a novel insight into understanding the molecular mechanisms of γδ T17 differentiation and function and may improve to the development of therapeutic approaches or drugs targeting γδ T17 for autoimmune diseases.
Collapse
Affiliation(s)
- Nanxi Shi
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yawen Zhang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yunting Liang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Yiming Chen
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Xichun Xia
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Zonghua Liu
- Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Zhenhua Li
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Fang Huang
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China.
| |
Collapse
|
9
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Ishikawa J, Suto A, Abe K, Hayashi Y, Suga K, Tanaka S, Kageyama T, Iwata A, Suzuki K, Suzuki K, Nakajima H. IL-21 is required for the maintenance and pathogenesis of murine Vγ4 + IL-17-producing γδT cells. Front Immunol 2023; 14:1211620. [PMID: 37662923 PMCID: PMC10473412 DOI: 10.3389/fimmu.2023.1211620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Murine IL-17-producing γδT (γδT17) cells are divided into two subsets: natural γδT17 (nγδT17) cells, whose development is restricted to the fetal thymus, and inducible γδT17 cells, which require antigen exposure for their IL-17 production and are presumed to develop from Rorc + Il17a - CCR9 + immature γδT17 cells in the adult thymus and whose T cell receptor (TCR) is biased toward Vγ4. Although IL-23 is known to be involved in developing γδT17 cells, the roles of other cytokines, such as IL-21, which is involved in developing Th17 cells like IL-23, in the development, maintenance, and pathophysiology of γδT17 cells remain unknown. Here, we show that IL-21 is dispensable for the fetal thymic development of nγδT17 cells but is required for the peripheral maintenance of Vγ4+nγδT17 cells. Upon stimulation with γδTCR, IL-1 plus IL-21 induces the proliferation of Vγ4+nγδT17 cells via STAT3 as effectively as IL-1 plus IL-23. Using bone marrow chimeric mice, we demonstrated that immature γδT17 cells are produced de novo in the adult mice from donor adult bone marrow cells and that IL-21 is dispensable for their development. Instead, IL-21 is required to expand newly induced Vγ4+γδT17 cells in the periphery upon immunization. Finally, using adoptive transfer experiments of γδT17 cells, we found that IL-21 receptors on γδT17 cells are involved in maintaining Vγ4+γδT17 cells, subsequent infiltration of Th17 cells into the spinal cord, and exacerbation of experimental autoimmune encephalomyelitis. Collectively, IL-21 plays a vital role in the maintenance and pathogenesis of Vγ4+γδT17 cells.
Collapse
Affiliation(s)
- Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Kazuya Abe
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Hayashi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumasa Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan
| |
Collapse
|
11
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
12
|
Edwards SC, Hedley A, Hoevenaar WH, Wiesheu R, Glauner T, Kilbey A, Shaw R, Boufea K, Batada N, Hatano S, Yoshikai Y, Blyth K, Miller C, Kirschner K, Coffelt SB. PD-1 and TIM-3 differentially regulate subsets of mouse IL-17A-producing γδ T cells. J Exp Med 2023; 220:e20211431. [PMID: 36480166 PMCID: PMC9732671 DOI: 10.1084/jem.20211431] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1β and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.
Collapse
Affiliation(s)
- Sarah C. Edwards
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Wilma H.M. Hoevenaar
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Robert Wiesheu
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Teresa Glauner
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Anna Kilbey
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Katerina Boufea
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nizar Batada
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Crispin Miller
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Kristina Kirschner
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow UK
| |
Collapse
|
13
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
14
|
Ling S, You Z, Li Y, Zhang J, Zhao S, He Y, Chen X. The role of γδ T17 cells in cardiovascular disease. J Leukoc Biol 2022; 112:1649-1661. [PMID: 36073777 DOI: 10.1002/jlb.3mr0822-761rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023] Open
Abstract
Due to the ability of γδ T cells to bridge adaptive and innate immunity, γδ T cells can respond to a variety of molecular cues and acquire the ability to induce a variety of cytokines such as IL-17 family, IFN-γ, IL-4, and IL-10. IL-17+ γδ T cells (γδ T17 cells) populations have recently received considerable interest as they are the major early source of IL-17A in many immune response models. However, the exact mechanism of γδ T17 cells is still poorly understood, especially in the context of cardiovascular disease (CVD). CVD is the leading cause of death in the world, and it tends to be younger. Here, we offer a review of the cardiovascular inflammatory and immune functions of γδ T17 cells in order to understand their role in CVD, which may be the key to developing new clinical applications.
Collapse
Affiliation(s)
- Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China
| |
Collapse
|
15
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
16
|
Reciprocal alterations in circulating and hepatic gamma-delta T cells in patients with primary biliary cholangitis. Hepatol Int 2022; 16:195-206. [PMID: 35028922 DOI: 10.1007/s12072-021-10267-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/24/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Gamma-delta (γδ) T cells are involved in the development of diverse liver and autoimmune diseases, whereas the role of γδ T cells in primary biliary cholangitis (PBC) remains unclear. METHODS We analyzed the number, phenotypes, and functional molecules of both circulating and hepatic γδ T cells in PBC patients and healthy controls (HCs) by flow cytometric analysis and immunohistochemistry. RESULTS We identified two distinct functional subsets of circulating γδ T cells according to the CD3/TCRγδ complex: the TCRγδhigh and TCRγδlow subsets. Approximately, three-quarters of cells in the TCRγδhigh subset were Vδ1 T cells, while Vδ2 T cells were enriched in the TCRγδlow subset in HCs. The frequency and absolute number of circulating TCRγδlow cells were significantly decreased in PBC patients compared with HCs (p < 0.001). Furthermore, the frequency of TCRγδlow cells was correlated with disease severity and ursodeoxycholic acid (UDCA) response. TCRγδlow cells exhibited a similar apoptotic and proliferative phenotype, but enhanced liver-homing chemokine receptor (CXCR6) expression in PBC patients compared with HCs. In addition, circulating TCRγδlow cells were more activated and produced higher granzyme B (GZMB) in PBC patients compared with HCs. Finally, compared with heathy liver controls, hepatic γδ T cells were increased and infiltrated in the inflamed portal tracts in PBC liver. Furthermore, the number of hepatic γδ T cells was correlated with cholestatic markers and UDCA response. CONCLUSION The circulating TCRγδlow subset may migrate to the liver via the CXCR6-CXCL16 axis and be involved in the pathogenesis of PBC by increasing GZMB production.
Collapse
|
17
|
Yao YE, Qin CC, Yang CM, Huang TX. γδT17/γδTreg cell subsets: a new paradigm for asthma treatment. J Asthma 2021; 59:2028-2038. [PMID: 34634976 DOI: 10.1080/02770903.2021.1980585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bronchial asthma (abbreviated as asthma), is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. The main characteristics of asthma include variable reversible airflow limitation and airway remodeling. The pathogenesis of asthma is still unclear. Th1/Th2 imbalance, Th1 deficiency and Th2 hyperfunction are classic pathophysiological mechanisms of asthma. Some studies have shown that the imbalance of the Th1/Th2 cellular immune model and Th17/Treg imbalance play a key role in the occurrence and development of asthma; however, these imbalances do not fully explain the disease. In recent years, studies have shown that γδT and γδT17 cells are involved in the pathogenesis of asthma. γδTreg has a potential immunosuppressive function, but its regulatory mechanisms have not been fully elucidated. In this paper, we reviewed the role of γδT17/γδTreg cells in bronchial asthma, including the mechanisms of their development and activation. Here we propose that γδT17/Treg cell subsets contribute to the occurrence and development of asthma, constituting a novel potential target for asthma treatment.
Collapse
Affiliation(s)
- Yi-En Yao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cai-Cheng Qin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Mian Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian-Xia Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Tan L, Fichtner AS, Bruni E, Odak I, Sandrock I, Bubke A, Borchers A, Schultze-Florey C, Koenecke C, Förster R, Jarek M, von Kaisenberg C, Schulz A, Chu X, Zhang B, Li Y, Panzer U, Krebs CF, Ravens S, Prinz I. A fetal wave of human type 3 effector γδ cells with restricted TCR diversity persists into adulthood. Sci Immunol 2021; 6:6/58/eabf0125. [PMID: 33893173 DOI: 10.1126/sciimmunol.abf0125] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that the mouse embryonic thymus produces distinct waves of innate effector γδ T cells. However, it is unclear whether this process occurs similarly in humans and whether it comprises a dedicated subset of innate-like type 3 effector γδ T cells. Here, we present a protocol for high-throughput sequencing of TRG and TRD pairs that comprise the clonal γδTCR. In combination with single-cell RNA sequencing, multiparameter flow cytometry, and TCR sequencing, we reveal a high heterogeneity of γδ T cells sorted from neonatal and adult blood that correlated with TCR usage. Immature γδ T cell clusters displayed mixed and diverse TCRs, but effector cell types segregated according to the expression of either highly expanded individual Vδ1+ TCRs or moderately expanded semi-invariant Vγ9Vδ2+ TCRs. The Vγ9Vδ2+ T cells shared expression of genes that mark innate-like T cells, including ZBTB16 (encoding PLZF), KLRB1, and KLRC1, but consisted of distinct clusters with unrelated Vγ9Vδ2+ TCR clones characterized either by TBX21, FCGR3A, and cytotoxicity-associated gene expression (type 1) or by CCR6, RORC, IL23R, and DPP4 expression (type 3). Effector γδ T cells with type 1 and type 3 innate T cell signatures were detected in a public dataset of early embryonic thymus organogenesis. Together, this study suggests that functionally distinct waves of human innate-like effector γδ T cells with semi-invariant Vγ9Vδ2+ TCR develop in the early fetal thymus and persist into adulthood.
Collapse
Affiliation(s)
- Likai Tan
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Elena Bruni
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Alina Borchers
- Translational Immunology, III. Department of Medicine, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schultze-Florey
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Hannover Medical School, Hannover, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Xiaojing Chu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Computational Biology for Individualised Medicine TWINCORE, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine TWINCORE, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Yang Li
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Department of Computational Biology for Individualised Medicine TWINCORE, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Ulf Panzer
- Translational Immunology, III. Department of Medicine, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- Translational Immunology, III. Department of Medicine, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany. .,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Reyes RM, Deng Y, Zhang D, Ji N, Mukherjee N, Wheeler K, Gupta HB, Padron AS, Kancharla A, Zhang C, Garcia M, Kornepati AVR, Boyman O, Conejo-Garcia JR, Svatek RS, Curiel TJ. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J Immunother Cancer 2021; 9:e002051. [PMID: 33849925 PMCID: PMC8051418 DOI: 10.1136/jitc-2020-002051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Anti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1. METHODS We studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites. RESULTS IL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells. CONCLUSIONS Mechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.
Collapse
Affiliation(s)
- Ryan Michael Reyes
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yilun Deng
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Deyi Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Karen Wheeler
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Harshita B Gupta
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alvaro S Padron
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Aravind Kancharla
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Chenghao Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Myrna Garcia
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Anand V R Kornepati
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Robert S Svatek
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Clayton Foundation for Research, Houston, Texas, USA
| |
Collapse
|
20
|
Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci 2021; 11:48. [PMID: 33653419 PMCID: PMC7927236 DOI: 10.1186/s13578-021-00565-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
γδT cells are a mixture of innate programming and acquired adaptability that bridge the adaptive and innate immune systems. γδT cells are mainly classified as tissue-resident Vδ1 or circulating Vδ2 γδT cells. In the tumor microenvironment, tumor immunity is influenced by the increased quantity and phenotype plasticity of γδT cells. Commensal bacteria are ubiquitous in the human body, and they have been confirmed to exist in various tumor tissues. With the participation of commensal bacteria, γδT cells maintain homeostasis and are activated to affect the development and progression of tumors. Here, we summarize the relationship between γδT cells and commensal bacteria, the potential protumor and antitumor effects underlying γδT cells, and the new developments in γδT cell-based tumor therapy which is expected to open new opportunities for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Déchanet-Merville J, Prinz I. From basic research to clinical application of γδ T cells. Immunol Rev 2020; 298:5-9. [PMID: 33245813 DOI: 10.1111/imr.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|