1
|
Zhu T, Shen Q, Shen L, Wang Y, Zhu B, Ma L, Feng S, Wang C, Yan S, Li J, Chen Z, Zhou J, Huang H, Li B, Shen Z, Wang Q, Wang J, Gwinner W, Scheffner I, Rong S, Yang B, Wang J, Haller H, Han X, Guo G, Yin Z, Jin J, Lan HY, Chen J, Jiang H. Senescence-induced p21 high macrophages contributed to CD8 + T cells-related immune hyporesponsiveness in kidney transplantation via Zfp36/IL-27 axis. Cell Discov 2025; 11:38. [PMID: 40234384 PMCID: PMC12000408 DOI: 10.1038/s41421-025-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/14/2025] [Indexed: 04/17/2025] Open
Abstract
Recipients' age has emerged as a key factor that impacts on acute renal allograft rejection and graft survival. Age-related functional and structural changes in the immune system have been observed, yet the precise influence of aged immunity on kidney transplant remains unclear. In an initial retrospective analysis of clinical data gathered from two major centers in China and Germany, we found a correlation between aging and mitigated rejection outcomes in kidney recipients. To study the mechanism, we performed kidney transplantation on mice and observed attenuated allograft rejection in senescent recipients. Single-cell transcriptome analysis of allograft kidneys indicated a protective role of p21high macrophages in aged mice. Supernatant collected from p21high macrophage primary culture inhibited the cytotoxic function and proliferation of CD8+ T cells. Zfp36 is highly expressed in senescent p21high macrophages. To determine its role in renal allograft rejection, we studied mice with Zfp36 conditionally deleted in macrophages (Zfp36-cKO). These mice developed exacerbated allograft rejection with enhanced IL-27 production and CD8+ T cell hyperactivation. Inhibition of IL-27 with neutralizing antibody or deletion of IL-27 receptor on CD8+ T cells reversed acute renal allograft rejection in Zfp36-cKO mice. Moreover, in vitro silencing Zfp36 with siRNA led to impaired degradation of IL-27 p28 mRNA and a subsequent increase of IL-27 in p21high macrophages. In conclusion, senescent macrophages protect renal allograft rejection by suppressing CD8+ T cells via a Zfp36/IL-27-dependent mechanism. These findings may provide innovative therapeutic strategies for addressing kidney allograft rejection.
Collapse
Affiliation(s)
- Tingting Zhu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University Medical College Affiliated, Hangzhou, Zhejiang, China
| | - Qixia Shen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Lingling Shen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Bochen Zhu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Lifeng Ma
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi Feng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Sijing Yan
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Jingyi Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Zhimin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Hongfeng Huang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Bingjue Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Zhouji Shen
- Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wilfried Gwinner
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Irina Scheffner
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junwen Wang
- Division of AOS & CDC, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Xiaoping Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Jin Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China.
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li L, Xie S, Deng W. RNA binding proteins: Mechanistic considerations and perspectives in controlling cardiovascular diseases. Eur J Pharmacol 2025; 987:177101. [PMID: 39613174 DOI: 10.1016/j.ejphar.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) are becoming serious disease that endangering human health due to the increasing morbidity and mortality, and many molecular targets are involved in this complex pathologic process. Recently, RNA-binding proteins (RBPs) have received potential attention as a promising targets for preventing CVDs, including myocardial hypertrophy, dilated cardiomyopathy (DCM), myocardial fibrosis, and pulmonary hypertension (PH). As important regulators of RNA metabolism, RBPs play important roles in all steps of the gene expression cascade,and affect the occurrence and development of various diseases. In this review, we discuss the regulatory role of RBPs on various CVDs at the post transcriptional modification level based on current research. We also highlight the existing and potential RNA-based therapeutics that could impact future CVD treatments.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
4
|
Rathore D, Marino MJ, Issara-Amphorn J, Yoon SH, Manes NP, Nita-Lazar A. Lipopolysaccharide Regulates the Macrophage RNA-Binding Proteome. J Proteome Res 2024; 23:3280-3293. [PMID: 38527097 PMCID: PMC11296930 DOI: 10.1021/acs.jproteome.3c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
RNA-protein interactions within cellular signaling pathways have significant modulatory effects on RNA binding proteins' (RBPs') effector functions. During the innate immune response, specific RNA-protein interactions have been reported as a regulatory layer of post-transcriptional control. We investigated changes in the RNA-bound proteome of immortalized mouse macrophages (IMM) following treatment with lipopolysaccharide (LPS). Stable isotope labeling by amino acids in cell culture (SILAC) of cells followed by unbiased purification of RNP complexes at two time points after LPS stimulation and bottom-up proteomic analysis by LC-MS/MS resulted in a set of significantly affected RBPs. Global RNA sequencing and LFQ proteomics were used to characterize the correlation of transcript and protein abundance changes in response to LPS at different time points with changes in protein-RNA binding. Il1α, MARCKS, and ACOD1 were noted as RBP candidates involved in innate immune signaling. The binding sites of the RBP and RNA conjugates at amino acid resolution were investigated by digesting the cross-linked oligonucleotide from peptides remaining after elution using Nuclease P1. The combined data sets provide directions for further studies of innate immune signaling regulation by RBP interactions with different classes of RNA.
Collapse
Affiliation(s)
- Deepali Rathore
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matthew J. Marino
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sung Hwan Yoon
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Bataclan M, Leoni C, Moro SG, Pecoraro M, Wong EH, Heissmeyer V, Monticelli S. Crosstalk between Regnase-1 and -3 shapes mast cell survival and cytokine expression. Life Sci Alliance 2024; 7:e202402784. [PMID: 38830770 PMCID: PMC11147952 DOI: 10.26508/lsa.202402784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.
Collapse
Affiliation(s)
- Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simone G Moro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
6
|
Mo K, Chu Y, Liu Y, Zheng G, Song K, Song Q, Zheng H, Tang Y, Tian X, Yao W, Fang H, Wang K, Jiang Y, Yang D, Chen Y, Huang C, Li T, Qu H, Song X, Zhou J. Targeting hnRNPC suppresses thyroid follicular epithelial cell apoptosis and necroptosis through m 6A-modified ATF4 in autoimmune thyroid disease. Pharmacol Res 2023; 196:106933. [PMID: 37729957 DOI: 10.1016/j.phrs.2023.106933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.
Collapse
Affiliation(s)
- Ke Mo
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China
| | - Yongli Chu
- Department of Scientific Research, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Yang Liu
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Guibin Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Kaiyu Song
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Qiong Song
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China
| | - Haitao Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Yuxiao Tang
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Xinghan Tian
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Wenjie Yao
- Department of Endocrinology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Han Fang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Kejian Wang
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, Shandong, China
| | - Yongqiang Jiang
- Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China; Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Hongmei Qu
- Departments of Obstetrics and Gynecology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| | - Xicheng Song
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China; Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China.
| |
Collapse
|
7
|
Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V, Monticelli S. The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun 2023; 14:3862. [PMID: 37386028 PMCID: PMC10310798 DOI: 10.1038/s41467-023-39614-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Mast cells are central players in allergy and asthma, and their dysregulated responses lead to reduced quality of life and life-threatening conditions such as anaphylaxis. The RNA modification N6-methyladenosine (m6A) has a prominent impact on immune cell functions, but its role in mast cells remains unexplored. Here, by optimizing tools to genetically manipulate primary mast cells, we reveal that the m6A mRNA methyltransferase complex modulates mast cell proliferation and survival. Depletion of the catalytic component Mettl3 exacerbates effector functions in response to IgE and antigen complexes, both in vitro and in vivo. Mechanistically, deletion of Mettl3 or Mettl14, another component of the methyltransferase complex, lead to the enhanced expression of inflammatory cytokines. By focusing on one of the most affected mRNAs, namely the one encoding the cytokine IL-13, we find that it is methylated in activated mast cells, and that Mettl3 affects its transcript stability in an enzymatic activity-dependent manner, requiring consensus m6A sites in the Il13 3'-untranslated region. Overall, we reveal that the m6A machinery is essential in mast cells to sustain growth and to restrain inflammatory responses.
Collapse
Affiliation(s)
- Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| | - Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Taku Ito-Kureha
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
8
|
Feng S, Wen H, Liu K, Xiong M, Li J, Gui Y, Lv C, Zhang J, Ma X, Wang X, Yuan S. hnRNPH1 establishes Sertoli-germ cell crosstalk through cooperation with PTBP1 and AR, and is essential for male fertility in mice. Development 2023; 150:dev201040. [PMID: 36718792 DOI: 10.1242/dev.201040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
Spermatogenesis depends on the crosstalk of Sertoli cells (SCs) and germ cells. However, the gene regulatory network establishing the communications between SCs and germ cells remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) in SCs is essential for the establishment of crosstalk between SCs and germ cells. Conditional knockout of hnRNPH1 in mouse SCs leads to compromised blood-testis barrier function, delayed meiotic progression, increased germ cell apoptosis, sloughing of germ cells and, eventually, infertility of mice. Mechanistically, we discovered that hnRNPH1 could interact with the splicing regulator PTBP1 in SCs to regulate the pre-mRNA alternative splicing of the target genes functionally related to cell adhesion. Interestingly, we also found hnRNPH1 could cooperate with the androgen receptor, one of the SC-specific transcription factors, to modulate the transcription level of a group of genes associated with the cell-cell junction and EGFR pathway by directly binding to the gene promoters. Collectively, our findings reveal a crucial role for hnRNPH1 in SCs during spermatogenesis and uncover a potential molecular regulatory network involving hnRNPH1 in establishing Sertoli-germ cell crosstalk.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|