1
|
Calderón-Ezquerro MC, Ponce de León A. A, Brunner-Mendoza C, Guerrero-Guerra C. C, Sanchez-Flores A, Salinas-Peralta I, López Jacome LE, Colín Castro C. CA, Martínez Zavaleta MG. Assessment of airborne bacteria from a public health institution in Mexico City. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003672. [PMID: 39509382 PMCID: PMC11542838 DOI: 10.1371/journal.pgph.0003672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
In this work, the composition of the bacterial community in the air of a hospital in Mexico City was evaluated using metabarcoding and proteomics approaches, along with the assessment of environmental factors such as temperature, humidity, and suspended particles. Two types of aerobiological samplers were used: Andersen One-Stage Viable Particle Sampler (AVPS) and Coriolis μ sampler (CμS-Sampler). Sampling was performed in four areas of the hospital: Floor 1 (F1), Floor 2 (F2), and Emergency Unit (EU), as well as outdoors (OH). The use of both samplers showed variations in diversity and composition. Bacterial abundance was 89.55% with the CμS-Sampler and 74.00% with the AVPS. The predominant phyla with the AVPS were Firmicutes, Proteobacteria and Actinobacteria, while with the CμS-Sampler, the main phyla were Proteobacteria, followed by Actinobacteria and Firmicutes. The highest diversity and richness of bacteria was recorded in F1 and F2, with 32 species identified, with a greater number within the hospital. Potentially pathogenic bacteria such as Bacillus spp., B. cereus, B. pumilus, Clostridium spp., Enterococcus gallinarum, Micrococcus luteus and Staphylococcus spp. were detected. Furthermore, a high concentration of particles between 2.5 μm and 10 μm, and Total Particulate Matter (TPM) was observed, with values of TPM, 303 μg/m3 in F1, 195 μg/m3 in F2, 235 μg/m3 in EU and 188 μg/m3 in OH. Temperatures averaged between 26 and 27°C, and relative humidity ranged between 39.8 and 43.5%. These environmental conditions and particulate matter can promote bacterial growth and their dispersion in the air, constituting a continuous risk of exposure to pathogens, mainly in indoor areas of the hospital. This study provides a framework for air monitoring, where the results of different samplers complement the detection of potential pathogens.
Collapse
Affiliation(s)
- Maria Carmen Calderón-Ezquerro
- Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, Mexico City, México
| | - Alfredo Ponce de León A.
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - César Guerrero-Guerra C.
- Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, UNAM, Mexico City, México
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, UNAM, Morelos, México
| | - Ilse Salinas-Peralta
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, UNAM, Morelos, México
| | - Luis Esau López Jacome
- Laboratorio de Microbiología Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, México
- Facultad de Química, Laboratorio, UNAM, Mexico City, México
| | - Claudia Adriana Colín Castro C.
- Laboratorio de Microbiología Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, México
| | | |
Collapse
|
2
|
Gupta N, Abd EL-Gawaad N, Mallasiy L. Hospital-borne hazardous air pollutants and air cleaning strategies amid the surge of SARS-CoV-2 new variants. Heliyon 2024; 10:e38874. [PMID: 39449698 PMCID: PMC11497388 DOI: 10.1016/j.heliyon.2024.e38874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Indoor air pollutants and airborne contamination removal have been challenging in healthcare facilities. The airborne transmission control and HVAC system may collapse in hospitals due to the highly infectious respiratory disease-associated patient surge, like COVID-19. Common air filtration systems and HVAC systems enhance the patients' comfort and support indoor hygiene, hitherto insufficient to control highly infectious airborne pathogens and hospital-borne pollutants such as radon, PM2.5, patient droplets, VOC, high CO2, and anesthetic gases. This review summarized important air cleaning interventions to enhance HVAC efficiency and indoor safety. We discussed efficient air cleaning and ventilation strategies including air filtration, air ionization, passive removal materials (PRM), and UVGI to minimize cross-contamination in hospital wards.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research & Development, River Engineering Private Limited, Ecotec-3, Greater Noida, India
| | - N.S. Abd EL-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, 62529, Saudi Arabia
| | - L.O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil Asir, 61913, Saudi Arabia
| |
Collapse
|
3
|
Loveniers PJ, Devlieghere F, Sampers I. Towards tailored guidelines for microbial air quality in the food industry. Int J Food Microbiol 2024; 421:110779. [PMID: 38852216 DOI: 10.1016/j.ijfoodmicro.2024.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Airborne microorganisms in food processing environments pose a potential risk for food product contamination. Yet, the absence of established standards or guidelines setting quantitative limits on airborne microorganisms underscores a critical gap in current regulatory frameworks. This review seeks to explore the feasibility of establishing quantitative limits for airborne microorganisms in food processing facilities, aiming to provide evidence-based guidance to enhance food safety practices in the industry. The review begins by addressing the complexities of microbial air quality in the food industry through a general literature search covering sources of airborne microorganisms, factors affecting particle deposition, air sampling methods and preventive measures. Subsequently, it employs a structured approach to assess the significance of air quality and its impact on product quality. Utilizing the PRISMA method, relevant scientific literature from May 2002 to May 2022 was examined, resulting in 26 articles meeting inclusion criteria from a pool of 11,737 original research papers. Additionally, the review investigates existing probability models for assessing airborne contamination to enhance air quality risk assessment in food safety management systems. The literature reveals a lack of substantial evidence supporting a direct correlation between airborne microorganisms and food contamination. The absence of standardized air sampling methodologies in previous studies hinders the comparability and reliability of research findings. Additionally, the literature fails to establish a conclusive relationship between influencing factors such as total particle counts, temperature, relative humidity and airborne contamination. Contradictory probability models for quantifying airborne contamination, and the absence of tailored preventive measures, hinder effective control and undermine microbial contamination control in diverse food processing contexts. In conclusion, the development of numeric guidelines for airborne contamination necessitates a tailored approach, considering factors such as product characteristics and production context. By integrating risk assessment models into this process, a more thorough comprehension of contamination risks can be achieved, providing tailored guidance based on the identified risk levels for each product. Ongoing collaborative efforts are essential to develop evidence-based guidelines that effectively mitigate risks without incurring unnecessary costs.
Collapse
Affiliation(s)
- Pieter-Jan Loveniers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
4
|
Blosi M, Brigliadori A, Ortelli S, Zanoni I, Gardini D, Vineis C, Varesano A, Ballarin B, Perucca M, Costa AL. Re-designing nano-silver technology exploiting one-pot hydroxyethyl cellulose-driven green synthesis. Front Chem 2024; 12:1432546. [PMID: 39206438 PMCID: PMC11349673 DOI: 10.3389/fchem.2024.1432546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Re-designing existing nano-silver technologies to optimize efficacy and sustainability has a tangible impact on preventing infections and limiting the spread of pathogenic microorganisms. Advancements in manufacturing processes could lead to more cost-effective and scalable production methods, making nano-silver-based antimicrobial products more accessible in various applications, such as medical devices, textiles, and water purification systems. In this paper, we present a new, versatile, and eco-friendly one-pot process for preparing silver nanoparticles (AgNPs) at room temperature by using a quaternary ammonium salt of hydroxyethyl cellulose (HEC), a green ingredient, acting as a capping and reducing agent. The resulting nano-hybrid phase, AgHEC, consists of AgNPs embedded into a hydrogel matrix with a tunable viscosity depending on the conversion grade, from ions to nanoparticles, and on the pH. To investigate the synthesis kinetics, we monitored the reaction progress within the first 24 h by analyzing the obtained NPs in terms of particle size (dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM)), Z-potential (ELS), surface plasmon resonance (UV-VIS), crystallographic phase (XRD), viscosity, and reaction yield (inductively coupled plasma-optical emission spectrometry (ICP-OES)). To explore the design space associated with AgHEC synthesis, we prepared a set of sample variants by changing two independent key parameters that affect nucleation and growth steps, thereby impacting the physicochemical properties and the investigated antimicrobial activity. One of the identified design alternatives pointed out an improved antimicrobial activity in the suspension, which was confirmed after application as a coating on nonwoven cellulose fabrics. This enhancement was attributed to a lower particle size distribution and a positive synergistic effect with the HEC matrix.
Collapse
Affiliation(s)
- M. Blosi
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - A. Brigliadori
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - S. Ortelli
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - I. Zanoni
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - D. Gardini
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| | - C. Vineis
- National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Biella, Italy
| | - A. Varesano
- National Research Council of Italy, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (CNR-STIIMA), Biella, Italy
| | - B. Ballarin
- Department of Industrial Chemistry “Toso Montanari”, Bologna, Italy
| | | | - A. L. Costa
- National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, (CNR-ISSMC), Faenza (RA), Italy
| |
Collapse
|
5
|
Ibrahim F, Samsudin EZ, Ishak AR, Sathasivam J. The relationship between occupant behaviour and indoor air quality in Malaysian hospital outpatient departments: A multistage cross-sectional study. Heliyon 2024; 10:e34454. [PMID: 39082032 PMCID: PMC11284367 DOI: 10.1016/j.heliyon.2024.e34454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Poor indoor air quality (IAQ) in healthcare settings may adversely impact occupants' well-being and promote transmission of infectious respiratory disease. However, evidence on its potentially modifiable determinants, including occupant behaviour, remains scarce. This study aims to determine the relationship between occupant behaviour and IAQ in Malaysian hospital outpatient departments (OPDs). Methods A multistage cross-sectional study of six randomly selected Malaysian public hospital OPDs was conducted. In stage one, IAQ parameters, including temperature, relative humidity (RH), air velocity (AV), carbon dioxide (CO2), total bacterial count (TBC), and total fungal count (TFC) were measured. In stage two, an observation form based on the Korsavi and Montazami tool for measuring adaptive behaviour was used to examine occupant density, activities, and operation of building envelopes and appliances. Simple correlation, partial correlation, and linear regression analyses were performed to examine the relationship between occupant behaviour and IAQ parameters. Results The IAQ of selected hospital OPDs complied with established standards, except for temperature and AV. Occupant density was positively correlated with temperature and CO2. Meanwhile, occupants' activities including slow walking and brisk walking were positively correlated with temperature, AV, CO2, TBC and TFC. Conversely, occupants' opening of windows and doors were positively correlated with temperature and AV but negatively correlated with CO2, TBC and TFC. Finally, turning on fans was positively correlated with AV but negatively correlated with TBC, whereas turning on air conditioner was positively correlated with CO2. Among occupants' behaviour, opening of windows and doors contributed the most to variation in IAQ parameters. Conclusions The study findings suggest that IAQ in hospital OPDs are influenced by occupant density, activities, and operation of doors, windows, and appliances. Prospective hospital IAQ guidelines should incorporate policies and measures targeting these factors to ensure occupants' best practices in maintaining healthy hospital indoor air environments.
Collapse
Affiliation(s)
- Farha Ibrahim
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Training Management Division, Ministry of Health, Putrajaya, Malaysia
| | - Ely Zarina Samsudin
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Ahmad Razali Ishak
- Centre for Environmental Health and Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, Malaysia
| | - Jeyanthini Sathasivam
- Public Health Division, Johor State Health Department, Ministry of Health, Johor Bahru, Malaysia
| |
Collapse
|
6
|
Mousavi SM, Pouramini Z, Babapoor A, Binazadeh M, Rahmanian V, Gholami A, Omidfar N, Althomali RH, Chiang WH, Rahman MM. Photocatalysis air purification systems for coronavirus removal: Current technologies and future trends. CHEMOSPHERE 2024; 353:141525. [PMID: 38395369 DOI: 10.1016/j.chemosphere.2024.141525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Air pollution causes extreme toxicological repercussions for human health and ecology. The management of airborne bacteria and viruses has become an essential goal of air quality control. Existing pathogens in the air, including bacteria, archaea, viruses, and fungi, can have severe effects on human health. The photocatalysis process is one of the favorable approaches for eliminating them. The oxidative nature of semiconductor-based photocatalysts can be used to fight viral activation as a green, sustainable, and promising approach with significant promise for environmental clean-up. The photocatalysts show wonderful performance under moderate conditions while generating negligible by-products. Airborne viruses can be inactivated by various photocatalytic processes, such as chemical oxidation, toxicity due to the metal ions released from photocatalysts composed of metals, and morphological damage to viruses. This review paper provides a thorough and evaluative analysis of current information on using photocatalytic oxidation to deactivate viruses.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Zahra Pouramini
- Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Navid Omidfar
- Department of Pathology, Shiraz University of Medical Science, Shiraz, 71439-14693, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O.Box 80203, Saudi Arabia.
| |
Collapse
|
7
|
Obeidat B, Al-Zuriqat MH. Evaluating airflow dynamics in common vertical circulation spaces of a multi-floor apartment building for mitigating airborne infection risks: A CFD modeling study. Heliyon 2024; 10:e26596. [PMID: 38439893 PMCID: PMC10909661 DOI: 10.1016/j.heliyon.2024.e26596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
As more people increasingly inhabit indoor spaces, the importance of interior environment design has grown significantly. The focus of this research is to assess the air flow and air change per hour (ACH) within common service vertical circulation spaces in apartment buildings, emphasizing the potential role of these spaces in mitigating airborne infections. The intricate relationships between the design parameters of these spaces and variables related to air circulation are examined. To achieve this goal, the investigation employed a simulation-based approach, utilizing computational fluid dynamics (CFD) analysis to scrutinize the prevalent design of common vertical circulation spaces. The simulation outcomes unequivocally reveal that the design of these spaces has a direct impact on air circulation patterns, often influencing suboptimal conditions. Armed with these insights, this research advocates for a reevaluation of design considerations of common service vertical circulation in forthcoming housing projects. Furthermore, this research proposes innovative design solutions and strategies aimed at enhancing natural ventilation and overall air flow within common service vertical circulation spaces while evaluating their performance.
Collapse
Affiliation(s)
- Bushra Obeidat
- Department of Architecture, College of Architecture and Design, Jordan University of Science and Technology, 3030, Irbid 22110, Jordan
| | - Mai Hathal Al-Zuriqat
- Department of Architecture, College of Architecture and Design, Jordan University of Science and Technology, 3030, Irbid 22110, Jordan
| |
Collapse
|
8
|
Ehelepola N, Thilakarathna HA. Respiratory infection transmission risk and indoor air quality at outpatient departments and emergency treatment units of Sri Lankan teaching hospitals. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002862. [PMID: 38408038 PMCID: PMC10896534 DOI: 10.1371/journal.pgph.0002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Indoor carbon dioxide (CO2) concentration has been used as a proxy of the degree of ventilation and, by extension, as an indicator of the risk of contracting respiratory infections. No publications exist regarding indoor air quality (IAQ) parameters of Sri Lankan hospitals.We measured the levels of CO2 and seven other IAQ parameters during morning rush hours for three days, in outpatient departments (OPDs) and emergency treatment units (ETUs) of all 21 teaching hospitals of Sri Lanka. We measured the same parameters of outdoor air also. We calculated the mean values of those parameters. We looked for correlations between outdoors and OPD and ETU levels of selected air quality parameters.The average CO2 levels of outdoors, OPDs and ETUs respectively were 514ppm (ppm = parts per million), 749ppm and 795ppm. The average levels of PM2.5 (particulate matter with diameters <2.5μm) outdoors, OPDs and ETUs respectively, were 28.7μg/m3,32μg/m3 and 25.6 μg/m3. The average levels of PM10 (particulate matter with diameters <10μm) outdoors, OPDs and ETUs respectively, were 49.4μg/m3, 55.5μg/m3 and 47.9 μg/m3. The median levels of formaldehyde outdoors, OPDs and ETUs respectively, were 0.03mg/m3, 0.04mg/m3 and 0.08mg/m3. The median levels of total volatile organic compounds (VOC) outdoors, OPDs and ETUs respectively were 0.12mg/m3, 0.19mg/m3 and 0.38mg/m3.CO2 levels of air in OPDs and ETUs generally were below the national ceilings but above the ceilings used by some developed countries. Outdoors, OPDs and ETUs air contain PM10, PM2.5 levels higher than WHO ceilings, although below the national ceilings. VOC and formaldehyde levels are generally below the national ceilings. Air in OPDs and ETUs is hotter and humid than national ceilings. Outdoor PM10, PM2.5 levels influence OPDs and ETUs levels. We propose methods to reduce the risk of nosocomial respiratory infections and to improve IAQ of Sri Lankan OPDs and ETUs.
Collapse
|
9
|
Wilson NM, Calabria C, Warren A, Finlay A, O'Donovan A, Passerello GL, Ribaric NL, Ward P, Gillespie R, Farrel R, McNarry AF, Pan D. Quantifying hospital environmental ventilation using carbon dioxide monitoring - a multicentre study. Anaesthesia 2024; 79:147-155. [PMID: 38059394 DOI: 10.1111/anae.16124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 12/08/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of environmental ventilation in reducing airborne pathogen transmission. Carbon dioxide monitoring is recommended in the community to ensure adequate ventilation. Dynamic measurements of ventilation quantifying human exhaled waste gas accumulation are not conducted routinely in hospitals. Instead, environmental ventilation is allocated using static hourly air change rates. These vary according to the degree of perceived hazard, with the highest change rates reserved for locations where aerosol-generating procedures are performed, where medical/anaesthetic gases are used and where a small number of high-risk infective or immunocompromised patients may be isolated to reduce cross-infection. We aimed to quantify the quality and distribution of ventilation in hospital by measuring carbon dioxide levels in a two-phased prospective observational study. First, under controlled conditions, we validated our method and the relationship between human occupancy, ventilation and carbon dioxide levels using non-dispersive infrared carbon dioxide monitors. We then assessed ventilation quality in patient-occupied (clinical) and staff break and office (non-clinical) areas across two hospitals in Scotland. We selected acute medical and respiratory wards in which patients with COVID-19 are cared for routinely, as well as ICUs and operating theatres where aerosol-generating procedures are performed routinely. Between November and December 2022, 127,680 carbon dioxide measurements were obtained across 32 areas over 8 weeks. Carbon dioxide levels breached the 800 ppm threshold for 14% of the time in non-clinical areas vs. 7% in clinical areas (p < 0.001). In non-clinical areas, carbon dioxide levels were > 800 ppm for 20% of the time in both ICUs and wards, vs. 1% in operating theatres (p < 0.001). In clinical areas, carbon dioxide was > 800 ppm for 16% of the time in wards, vs. 0% in ICUs and operating theatres (p < 0.001). We conclude that staff break, office and clinical areas on acute medical and respiratory wards frequently had inadequate ventilation, potentially increasing the risks of airborne pathogen transmission to staff and patients. Conversely, ventilation was consistently high in the ICU and operating theatre clinical environments. Carbon dioxide monitoring could be used to measure and guide improvements in hospital ventilation.
Collapse
Affiliation(s)
- N M Wilson
- Department of Anaesthesia and Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - C Calabria
- Department of Anaesthesia and Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A Warren
- Department of Anaesthesia and Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A Finlay
- Department of Anaesthesia and Critical Care, Victoria Hospital, Kirkcaldy, UK
| | - A O'Donovan
- Department of Process, Energy and Transport Engineering, MeSSO Research Group, Munster Technological University, Cork, Ireland
| | - G L Passerello
- Department of Anaesthesia and Critical Care, Victoria Hospital, Kirkcaldy, UK
| | - N L Ribaric
- Faculty of Medicine, University Medical Centre Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - P Ward
- Department of Anaesthesia, St John's Hospital, Livingston, UK
| | - R Gillespie
- Department of Anaesthesia and Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - R Farrel
- Department of Anaesthesia and Critical Care, Victoria Hospital, Kirkcaldy, UK
| | - A F McNarry
- Department of Anaesthesia, Western General Hospital, UK
| | - D Pan
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
10
|
Hanna F, Alameddine I, Zaraket H, Alkalamouni H, El-Fadel M. Airborne influenza virus shedding by patients in health care units: Removal mechanisms affecting virus transmission. PLoS One 2023; 18:e0290124. [PMID: 37878553 PMCID: PMC10599543 DOI: 10.1371/journal.pone.0290124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 10/27/2023] Open
Abstract
In this study, we characterize the distribution of airborne viruses (influenza A/B) in hospital rooms of patients with confirmed infections. Concurrently, we monitored fine particulate matter (PM2.5 & PM10) and several physical parameters including the room air exchange rate, temperature, and relative humidity to identify corresponding correlations with virus transport and removal determinants. The results continue to raise concerns about indoor air quality (IAQ) in healthcare facilities and the potential exposure of patients, staff and visitors to aerosolized viruses as well as elevated indoor PM levels caused by outdoor sources and/or re-suspension of settled particles by indoor activities. The influenza A virus was detected in 42% of 33 monitored rooms, with viruses detectible up to 1.5 m away from the infected patient. Active coughing was a statistically significant variable that contributed to a higher positive rate of virus detection in the collected air samples. Viral load across patient rooms ranged between 222 and 5,760 copies/m3, with a mean of 820 copies/m3. Measured PM2.5 and PM10 levels exceeded IAQ daily exposure guidelines in most monitored rooms. Statistical and numerical analyses showed that dispersion was the dominant viral removal pathway followed by settling. Changes in the relative humidity and the room's temperature were had a significant impact on the viral load removal. In closure, we highlight the need for an integrated approach to control determinants of IAQ in patients' rooms.
Collapse
Affiliation(s)
- Francis Hanna
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Ibrahim Alameddine
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Habib Alkalamouni
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mutasem El-Fadel
- Department of Civil Infrastructure & Environmental Engineering, College of Engineering, Khalifa University, United Arab Emirates
- Department of Civil & Environmental Engineering, Faculty of Engineering & Architecture, American University of Beirut, Lebanon
| |
Collapse
|
11
|
Ekpanyaskul C, Padungtod C, Kleebbua C. Home as a new physical workplace: a causal model for understanding the inextricable link between home environment, work productivity, and well-being. INDUSTRIAL HEALTH 2023; 61:320-328. [PMID: 36058851 PMCID: PMC10542468 DOI: 10.2486/indhealth.2022-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The home has become a new physical workplace, and can therefore influence the work, health, and life of workers. This cross-sectional study aimed to evaluate the chronology of the effects of work hazards at home on factors such as workers' health, productivity, and well-being (WB). Information on novice working-from-home (WFH) workers was derived from the "Occupational health of WFH" project. The selected variables in the hypothesis model comprised problems such as perceived indoor environmental quality (IEQ), working conditions (WC), sick house syndrome (SHS), occupational stress (OS), work productivity (WP), and WB. The relationship between these variables was analyzed using a structural equation model. The group analysis results showed the following significant indirect path effects from work environment through WP: IEQ-> SHS->OS->WP. A non-significant direct effect was observed between IEQ and WP. While WC problems could also have a significant direct effect on WP, or be mediated by OS, WP is a significant consequence and a direct effect of WB. In conclusion, the WFH model's causal impact between home environment, WP, and WB is a physiopsychological pathway. Therefore, creating a healthy home environment and WC, along with OS management, comprise important issues for improving productivity and WB for this new work style.
Collapse
Affiliation(s)
- Chatchai Ekpanyaskul
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Thailand
| | - Chantana Padungtod
- Division of Occupational and Environmental Diseases, Department of Disease Control, Ministry of Public Health, Thailand
| | - Chaiyut Kleebbua
- Division of Multi/Interdisciplinary Studies, Graduate School, Srinakharinwirot University, Thailand
| |
Collapse
|
12
|
Dancer SJ. Hospital cleaning: past, present, and future. Antimicrob Resist Infect Control 2023; 12:80. [PMID: 37608396 PMCID: PMC10464435 DOI: 10.1186/s13756-023-01275-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION The importance of hospital cleaning for controlling healthcare-associated infection (HAI) has taken years to acknowledge. This is mainly because the removal of dirt is inextricably entwined with gender and social status, along with lack of evidence and confusion over HAI definitions. Reducing so-called endogenous infection due to human carriage entails patient screening, decolonisation and/or prophylaxis, whereas adequate ventilation, plumbing and cleaning are needed to reduce exogenous infection. These infection types remain difficult to separate and quantitate. Patients themselves demonstrate wide-ranging vulnerability to infection, which further complicates attempted ranking of control interventions, including cleaning. There has been disproportionate attention towards endogenous infection with less interest in managing environmental reservoirs. QUANTIFYING CLEANING AND CLEANLINESS Finding evidence for cleaning is compromised by the fact that modelling HAI rates against arbitrary measurements of cleaning/cleanliness requires universal standards and these are not yet established. Furthermore, the distinction between cleaning (soil removal) and cleanliness (soil remaining) is usually overlooked. Tangible bench marking for both cleaning methods and all surface types within different units, with modification according to patient status, would be invaluable for domestic planning, monitoring and specification. AIMS AND OBJECTIVES This narrative review will focus on recent history and current status of cleaning in hospitals. While its importance is now generally accepted, cleaning practices still need attention in order to determine how, when and where to clean. Renewed interest in removal and monitoring of surface bioburden would help to embed risk-based practice in hospitals across the world.
Collapse
Affiliation(s)
- Stephanie J Dancer
- Department of Microbiology, NHS Lanarkshire & School of Applied Sciences, Edinburgh Napier University, Scotland, UK.
| |
Collapse
|
13
|
Chou YA, Wang ZY, Chang HC, Liu YC, Su PF, Huang YT, Yang CT, Lai CH. Indoor CO 2 monitoring in a surgical intensive care unit under visitation restrictions during the COVID-19 pandemic. Front Med (Lausanne) 2023; 10:1052452. [PMID: 37521349 PMCID: PMC10375033 DOI: 10.3389/fmed.2023.1052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background Indoor CO2 concentration is an important metric of indoor air quality (IAQ). The dynamic temporal pattern of CO2 levels in intensive care units (ICUs), where healthcare providers experience high cognitive load and occupant numbers are frequently changing, has not been comprehensively characterized. Objective We attempted to describe the dynamic change in CO2 levels in the ICU using an Internet of Things-based (IoT-based) monitoring system. Specifically, given that the COVID-19 pandemic makes hospital visitation restrictions necessary worldwide, this study aimed to appraise the impact of visitation restrictions on CO2 levels in the ICU. Methods Since February 2020, an IoT-based intelligent indoor environment monitoring system has been implemented in a 24-bed university hospital ICU, which is symmetrically divided into areas A and B. One sensor was placed at the workstation of each area for continuous monitoring. The data of CO2 and other pollutants (e.g., PM2.5) measured under standard and restricted visitation policies during the COVID-19 pandemic were retrieved for analysis. Additionally, the CO2 levels were compared between workdays and non-working days and between areas A and B. Results The median CO2 level (interquartile range [IQR]) was 616 (524-682) ppm, and only 979 (0.34%) data points obtained in area A during standard visitation were ≥ 1,000 ppm. The CO2 concentrations were significantly lower during restricted visitation (median [IQR]: 576 [556-596] ppm) than during standard visitation (628 [602-663] ppm; p < 0.001). The PM2.5 concentrations were significantly lower during restricted visitation (median [IQR]: 1 [0-1] μg/m3) than during standard visitation (2 [1-3] μg/m3; p < 0.001). The daily CO2 and PM2.5 levels were relatively low at night and elevated as the occupant number increased during clinical handover and visitation. The CO2 concentrations were significantly higher in area A (median [IQR]: 681 [653-712] ppm) than in area B (524 [504-547] ppm; p < 0.001). The CO2 concentrations were significantly lower on non-working days (median [IQR]: 606 [587-671] ppm) than on workdays (583 [573-600] ppm; p < 0.001). Conclusion Our study suggests that visitation restrictions during the COVID-19 pandemic may affect CO2 levels in the ICU. Implantation of the IoT-based IAQ sensing network system may facilitate the monitoring of indoor CO2 levels.
Collapse
Affiliation(s)
- Ying-An Chou
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zheng-Yao Wang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- UniSmart Technology Co., Ltd., Taichung, Taiwan
| | - Hsiang-Ching Chang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- UniSmart Technology Co., Ltd., Taichung, Taiwan
| | - Yi-Chia Liu
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yen Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Tung Yang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Sheraz M, Mir KA, Anus A, Le VCT, Kim S, Nguyen VQ, Lee WR. SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2191-2216. [PMID: 36278886 DOI: 10.1039/d2em00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 μm size ranges), aerosols (5 μm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Kaleem Anwar Mir
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Global Change Impact Studies Centre, Ministry of Climate Change, Government of Pakistan, Islamabad, 44000, Pakistan
| | - Ali Anus
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Van Cam Thi Le
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Seungdo Kim
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- Environment Strategy Development Institute, Hallym University, Chuncheon-si 24252, South Korea
| | - Van Quyet Nguyen
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Woo Ram Lee
- Department of Chemistry, School of Future Convergence, Hallym University, Engineering Building# 1348, 1 Hallymdaehak-gil, Chuncheon-si 24252, Gangwon-do, South Korea.
| |
Collapse
|
15
|
Hiwar W, King M, Kharrufa H, Tidswell E, Fletcher LA, Noakes CJ. The impact of ventilation rate on reducing the microorganisms load in the air and on surfaces in a room-sized chamber. INDOOR AIR 2022; 32:e13161. [PMID: 36437677 PMCID: PMC9828490 DOI: 10.1111/ina.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Hospital-acquired infections (HAIs) are a global challenge incurring mortalities and high treatment costs. The environment plays an important role in transmission due to contaminated air and surfaces. This includes microorganisms' deposition from the air onto surfaces. Quantifying the deposition rate of microorganisms enables understanding surface contamination and can inform strategies to mitigate the infection risk. We developed and validated a novel Automated Multiplate Passive Air Sampling (AMPAS) device. This enables sequences of passive deposition samples to be collected over a controlled time period without human intervention. AMPAS was used with air sampling to measure the effect of ventilation rate and spatial location on the deposition rate of aerosolized Staphylococcus aureus in a 32 m3 chamber. Increasing the ventilation rate from 3 to 6 ACH results in a reduction of microbial load in the air and on surfaces by 45% ± 10% and 44% ± 32%, respectively. The deposition rate onto internal surfaces λd was calculated as 1.38 ± 0.48 h-1 . Samples of airborne and surface microorganisms taken closer to the ventilation supply showed a lower concentration than close to the extract. The findings support the importance of controlling the ventilation and the environmental parameters to mitigate both air and surface infection risks in the hospital environment.
Collapse
Affiliation(s)
- Waseem Hiwar
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | | | - Harith Kharrufa
- Informatics and Telecommunications Public Company (ITPC)MOCMosulIraq
| | - Emma Tidswell
- School of Civil EngineeringUniversity of LeedsLeedsUK
| | | | | |
Collapse
|
16
|
AlRayess S, Sleiman A, Alameddine I, Abou Fayad A, Matar GM, El-Fadel M. Airborne bacterial and PM characterization in intensive care units: correlations with physical control parameters. AIR QUALITY, ATMOSPHERE & HEALTH 2022; 15:1869-1880. [PMID: 35815238 PMCID: PMC9255450 DOI: 10.1007/s11869-022-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
In this study, the spatial variation of airborne bacteria in intensive care units (ICUs) was characterized. Fine particulate matter and several physical parameters were also monitored including temperature and relative humidity. The results showed that the total bacterial load ranged between 20.4 and 134.3 CFU/m3 across the ICUs. Bacterial cultures of the collected samples did not isolate any multi-drug-resistant Gram-negative bacilli indicating the absence of such aerosolized pathogens in the ICUs. Meanwhile, particulate matter levels in several ICUs were found to exceed the international guidelines set for 24-h PM exposure. Moreover, examining bacterial load contribution by size suggested that bacteria with sizes less than 0.65 µm contributed the least to the total bacterial loads, while those with sizes between 0.65 and 1.1 µm contributed the most. A multiple linear regression model was also built to predict the bacterial loads in the ICUs. The regression analysis explained 77% of the variability observed in the measured bacterial concentrations. The model showed that the level of activity in the ICU rooms as well as its occupancy level had strong positive correlations with bacterial loads, while distance away from the patient had a non-linear relationship with measured loads. No statistically significant correlation was found between bacterial load and particulate matter concentrations.
Collapse
Affiliation(s)
- S. AlRayess
- Department of Civil & Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - A. Sleiman
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research (CIDR), American University of Beirut, Beirut, Lebanon
- WHO Collaborating Center for Reference and Research On Bacterial Pathogens, Beirut, Lebanon
| | - I. Alameddine
- Department of Civil & Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - A. Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research (CIDR), American University of Beirut, Beirut, Lebanon
- WHO Collaborating Center for Reference and Research On Bacterial Pathogens, Beirut, Lebanon
| | - G. M. Matar
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research (CIDR), American University of Beirut, Beirut, Lebanon
- WHO Collaborating Center for Reference and Research On Bacterial Pathogens, Beirut, Lebanon
| | - M. El-Fadel
- Department of Civil & Environmental Engineering, American University of Beirut, Beirut, Lebanon
- Department of Industrial and Systems Engineering, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
17
|
Sahin C, Rastgeldi Dogan T, Yildiz M, Sofuoglu SC. Indoor environmental quality in naturally ventilated schools of a dusty region: Excess health risks and effect of heating and desert dust transport. INDOOR AIR 2022; 32:e13068. [PMID: 35904387 DOI: 10.1111/ina.13068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Indoor air quality (IAQ) is impacted by polluted outdoor air in naturally ventilated schools, especially in places where both anthropogenic and natural sources of ambient air pollution exist. CO2 , PM2.5 , PM10 , temperature, relative humidity (RH), and noise were measured in five naturally ventilated primary schools in City of Sanliurfa, in a dusty region of Turkey, Southeast Anatolia. Excess risk levels were estimated for particulate matter. Investigation was conducted through an educational year including two seasons in terms of anthropogenic effect, that is, heating/non-heating, and natural effect, that is, desert dust transport/non-dust transport. The median CO2 concentration was measured to be >1000 ppm in all seasons/schools. Temperature and RH fell out of the comfort zone in October-December, during which pollutant concentrations were considerably increased, specifically in November, that heating and dust transport periods coincide. The overall mean indoor PM10 and PM2.5 levels were 58 and 31.8 μg/m3 , respectively. Risk assessment indicate that both short (incidence of asthma symptoms in asthmatic children) and long-term (prevalence of bronchitis) effects are considerable with 10.9 (2.4-19.6)% and 19.5 (2.2-38.8)%, respectively. The findings suggest that mechanical ventilation retrofitting with particle filtration is needed to mitigate potential negative health consequences on children.
Collapse
Affiliation(s)
- Cagri Sahin
- Department of Environmental Engineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - Melek Yildiz
- Department of Environmental Engineering, Harran University, Sanliurfa, Turkey
| | - Sait C Sofuoglu
- Department of Environmental Engineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
18
|
Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. APPLIED SURFACE SCIENCE ADVANCES 2022; 9:100236. [PMCID: PMC8939627 DOI: 10.1016/j.apsadv.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus diseases 2019 (COVID-19), a viral infection pandemic, arises due to easy human-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2). The SARS-CoV-2 causes severe respiratory disorders and other life-threatening diseases (during/post-infection) such as black mold disease, diabetes, cardiovascular, and neurological disorders/diseases. COVID-19 infection emerged challenging to control as SARS-CoV-2 transmits through respiratory droplets (> 10 µm size range), aerosols (< 5 µm), airborne, and particulate matter (PM1.0 PM2.5 and PM10.0). SARS-CoV-2 is more infective in indoor premises due to aerodynamics where droplets, aerosols, and PM1.0/2.5/10.0 float for a longer time and distance leading to a higher probability of it entering upper and lower respiratory tracts. To avoid human-to-human transmission, it is essential to trap and destroy SARS-CoV-2 from the air and provide virus-free air that will significantly reduce indoor viral exposure concerns. In this process, an efficient nano-enable photoelectrochemical oxidation (PECO, a destructive approach to neutralize bio-organism) assisted air purification is undoubtedly a good technological choice. This technical perspective explores the role of PECO-assisted Air-Purifiers (i.e., Molekule as a focus example for proof-of-concept) to trap and destroy indoor microorganisms (bacteria and viruses including Coronaviruses), molds, and allergens, and other indoor air pollutants, such as volatile organic compounds (VOCs) and PM1.0/2.5/10.0. It is observed through various standard and non-standard tests that stimuli-responsive nanomaterials coated filter technology traps and destroys microbial particles. Due to technological advancements according to premises requirements and high-performance desired outcomes, Molekule air purifiers, Air Pro Air -Rx, Air Mini, and Air Mini+, have received Food and Drug Administration (FDA) clearance as a Class II medical device for the destruction of bacteria and viruses.
Collapse
|
19
|
Ashuro Z, Diriba K, Afework A, Husen Washo G, Shiferaw Areba A, G/meskel Kanno G, Hareru HE, Kaso AW, Tesfu M. Assessment of Microbiological Quality of Indoor Air at Different Hospital Sites of Dilla University: A Cross-Sectional Study. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221100047. [PMID: 35601190 PMCID: PMC9121508 DOI: 10.1177/11786302221100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In both residential and hospital indoor environments, humans can be exposed to airborne microorganisms. The hospital's indoor air may contain a large number of disease-causing agents brought in by patients, staff, students, visitors, ventilation, or the outside. Hospitalized patients are at a higher risk of infection due to confined spaces, crowdedness, and poor infection prevention practices, which can accumulate and create favorable conditions for the growth and multiplication of microorganisms. Therefore, the aim of this study was to evaluate the indoor air bacterial load in Dilla University Hospital, Southern Ethiopia. METHODS An institutional-based cross-sectional study design was used to assess the bacterial load in the indoor air at Dilla University Hospital. To determine the bacterial load, a passive air sampling technique was used. The settle plate method was used to collect data, which involved exposing Petri-dishes filled with blood agar media to the indoor air of the sampled rooms for 60 minutes. RESULT A total of 72 indoor air samples were collected once a week for 2 weeks at 14-day intervals from 18 rooms in 8 wards, and samples were collected twice a day in the morning and afternoon. The mean bacterial concentrations ranged from 450 to 1585.83 CFU/m3 after 60 minutes of culture media exposure. The mean bacterial concentrations in the obstetrics, surgical, pediatric, gynecology, and medical wards exceeded WHO guidelines. A high indoor air bacterial load was found in 58 (80.6%) of the samples in this study. Gram-positive bacteria in the air were the most common 51 (71%) of the bacterial population measured in all indoor environments. Fungal growth was found in 65 (90.3%) of the samples. Temperatures (26.5°C-28.3°C) and relative humidity (61.1%-67.8%) in the rooms were both above WHO guidelines, creating favorable conditions for bacterial growth and multiplication. CONCLUSION The majority of the wards at Dilla University Hospital had bacterial loads in the air that exceeded WHO guidelines. Overcrowding, high temperatures, inadequate ventilation, improper waste management, and a lack of traffic flow control mechanisms could all contribute to a high concentration of bacteria in the indoor air. To control the introduction of microorganisms by patients, students, caregivers, and visitors, it is critical to regularly monitor indoor air bacterial load and implement infection prevention and control measures.
Collapse
Affiliation(s)
- Zemachu Ashuro
- Department of Environmental Health,
College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Kuma Diriba
- Department of Medical Laboratory
Sciences, College of Health Science and Medicine, Dilla University, Dilla,
Ethiopia
| | - Abel Afework
- Department of Infection Prevention and
Control, Dilla University Hospital, Dilla, Ethiopia
| | - Gose Husen Washo
- School of Medicine, College of Health
Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Abriham Shiferaw Areba
- Departement of Public Health, College
of Medicine and Health Science, Wachemo University, Hossana, Ethiopia
| | - Girum G/meskel Kanno
- Department of Environmental Health,
College of Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Habtamu Endashaw Hareru
- School of Public Health, College of
Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Abdene Weya Kaso
- School of Public Health, College of
Health Science and Medicine, Dilla University, Dilla, Ethiopia
| | - Mehret Tesfu
- School of Public Health, College of
Health Science and Medicine, Dilla University, Dilla, Ethiopia
| |
Collapse
|
20
|
Environmental Factors Affecting Diversity, Structure, and Temporal Variation of Airborne Fungal Communities in a Research and Teaching Building of Tianjin University, China. J Fungi (Basel) 2022; 8:jof8050431. [PMID: 35628687 PMCID: PMC9144611 DOI: 10.3390/jof8050431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Airborne fungi are widely distributed in the environment and may have adverse effects on human health. A 12-month survey on the diversity and concentration of culturable airborne fungi was carried out in a research and teaching building of Tianjin University. Indoor and outdoor environments were analyzed using an HAS-100B air sampler. A total of 667 fungal strains, belonging to 160 species and 73 genera were isolated and identified based on morphological and molecular analysis. The most abundant fungal genera were Alternaria (38.57%), Cladosporium (21.49%), and Aspergillus (5.34%), while the most frequently appearing species was A. alternata (21%), followed by A. tenuissima (12.4%), and C. cladosporioides (9.3%). The concentration of fungi in different environments ranged from 0 to 150 CFU/m3 and was significantly higher outdoor than indoor. Temperature and sampling month were significant factors influencing the whole building fungal community, while relative humidity and wind speed were highly correlated with fungal composition outdoor. Variations in the relative abundance of major airborne fungal taxa at different heights above-ground could lead to different community structures at different floors. Our results may provide valuable information for air quality monitoring and microbial pollution control in university building environments.
Collapse
|
21
|
Inanimate Surfaces and Air Contamination with Multidrug Resistant Species of Staphylococcus in the Neonatal Intensive Care Unit Environment. Microorganisms 2022; 10:microorganisms10030567. [PMID: 35336141 PMCID: PMC8955995 DOI: 10.3390/microorganisms10030567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/30/2023] Open
Abstract
Background: Contamination of the hospital environment with multi-resistant (MDR) Staphylococcus increases the risk of infection. The aim of this study is to identify the MDR species of Staphylococcus on inanimate surfaces, in air, and in clinical samples, and analyze the risk factors that correlate with the occurrence of infections in a Neonatal Intensive Care Unit. Methods: Samples of inanimate surfaces and air were taken using a premoistened swab (0.9% sodium chloride) and spontaneous air sedimentation, respectively. The clinical isolates were recovered from infected neonates. The isolates (environmental and clinical) were identified by matrix-assisted laser desorption ionization-time of flight and the resistance profile was calculated using the disk diffusion agar technique. Results: In total, 181 isolates were obtained, 93 from (surfaces), 18 from the air, and 70 clinical samples. S. epidermidis was the most frequent species (66.8%), and the failure rate in air cleaning was 100%. More than 60% of the isolates were MDR, and the majority of clinical isolates (60.4%) had a resistance profile identical to that of the environmental isolates. Conclusion: Staphylococcus spp. were found in most of the analyzed samples, with a high frequency of MDR isolates, demonstrating the importance of the hospital environment as a reservoir, and the need for infection control measures, and rational use of antimicrobials.
Collapse
|
22
|
Barnes NM, Wu H. Mechanisms regulating the airborne survival of Klebsiella pneumoniae under different relative humidity and temperature levels. INDOOR AIR 2022; 32:e12991. [PMID: 35225398 DOI: 10.1111/ina.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, Klebsiella pneumoniae was suspended in synthetic saliva in a nebulizer (N0 ) and nebulized for 5 min (N5 ) into an aerosol chamber and further prolonged in the aerosolization phase for 15 min (A15 ) under four different conditions: 20°C, 50% relative humidity (RH); 20°C, 80% RH; 30°C, 50% RH; and 30°C, 80% RH. Samples were collected at N0 , N5 , and A15 , then subjected to survival analysis and comparative transcriptomic analysis in order to help elucidate the underlying mechanisms of airborne survival. Survival analysis shows that a higher humidity and lower temperature were favorable for the airborne survival of K. pneumoniae, and the effect of RH was more remarkable at 20°C than that at 30°C. The RNA-seq results show that during the nebulization phase (N0 vs. N5 ), a total number of 201 differentially expressed genes (DEGs) were identified (103 downregulated and 98 upregulated). Comparison between nebulization and aerosolization phases (N5 vs. A15 ) indicates up to 132 DEGs, with 46 downregulated and 86 upregulated. The most notable groups of genes are those involved in cellular remodeling, metabolism and energy processes. Alarmingly, the mbl gene, which encodes antibiotic resistance in K. pneumoniae, was upregulated during the suspension phase under all the tested conditions. This study provides insights into the control of airborne transmitted diseases.
Collapse
Affiliation(s)
- Natasha Maria Barnes
- Department of Biology, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
| | - Haoxiang Wu
- Department of Biology, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
- Institute of Bioresource and Agriculture, Hong Kong Special Administrative Region, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
23
|
Laurent MR, Frans J. Monitors to improve indoor air carbon dioxide concentrations in the hospital: A randomized crossover trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151349. [PMID: 34728206 PMCID: PMC8556868 DOI: 10.1016/j.scitotenv.2021.151349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Ventilation has emerged as an important strategy to reduce indoor aerosol transmission of coronavirus disease 2019. Indoor air carbon dioxide (CO2) concentrations are a surrogate measure of respiratory pathogen transmission risk. OBJECTIVES To determine whether CO2 monitors are necessary and effective to improve ventilation in hospitals. METHODS A randomized, placebo (sham)-controlled, crossover, open label trial. Between February and May 2021, we placed CO2 monitors in twelve double-bed patient rooms across two geriatric wards. Staff were instructed to open windows, increase the air exchange rate and reduce room crowding to maintain indoor air CO2 concentrations ≤800 parts per million (ppm). RESULTS CO2 levels increased during morning care and especially in rooms housing couples (rooming-in). The median (interquartile range, IQR) time/day with CO2 concentration > 800 ppm (primary outcome) was 110 min (IQR 47-207) at baseline, 82 min (IQR 12-226.5) during sham periods, 78 min (IQR 20-154) during intervention periods and 140 min (IQR 19.5-612.5) post-intervention. The intervention period only differed significantly from the post-intervention period (P = 0.02), mainly due to an imbalance in rooming-in. Significant but small differences were observed in secondary outcomes of time/day with CO2 concentrations > 1000 ppm and daily peak CO2 concentrations during the intervention vs. baseline and vs. the post-intervention period, but not vs. sham. Staff reported cold discomfort for patients as the main barrier towards increasing ventilation. DISCUSSION Indoor air CO2 concentrations in hospital rooms commonly peaked above recommended levels, especially during morning care and rooming-in. There are many possible barriers towards implementing CO2 monitors to improve ventilation in a real-world hospital setting. A paradigm shift in hospital infection control towards adequate ventilation is warranted. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04770597.
Collapse
Affiliation(s)
- Michaël R Laurent
- Geriatrics Department, Imelda Hospital, Bonheiden, Belgium; Geriatrics Department, University Hospitals Leuven, Leuven, Belgium.
| | - Johan Frans
- Department of Medical Microbiology, Imelda Hospital, Bonheiden, Belgium
| |
Collapse
|
24
|
Unglaube F, Lammers A, Kreyenschulte CR, Lalk M, Mejía E. Preparation, Characterization and Antimicrobial Properties of Nanosized Silver-Containing Carbon/Silica Composites from Rice Husk Waste. ChemistryOpen 2021; 10:1244-1250. [PMID: 34904386 PMCID: PMC8668417 DOI: 10.1002/open.202100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Indexed: 01/09/2023] Open
Abstract
Rice husk, one of the main side products in the rice production, and its sustainable management represent a challenge in many countries. Herein, we describe the use of this abundant agricultural bio-waste as feedstock for the preparation of silver-containing carbon/silica nano composites with antimicrobial properties. The synthesis was performed using a fast and cheap methodology consisting of wet impregnation followed by pyrolysis, yielding C/SiO2 composite materials doped with varying amounts of silver from 28 to 0.001 wt %. The materials were fully characterized and their antimicrobial activity against ESKAPE pathogens, namely E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli, and the pathogenic yeast C. albicans was investigated. Sensitivities of these strains against the prepared materials were demonstrated, even with exceptional low amounts of 0.015 m% silver. Hence, we report a straightforward method for the synthesis of antimicrobial agents from abundant sources which addresses urgent questions like bio-waste valorization and affordable alternatives to increasingly fewer effective antibiotics.
Collapse
Affiliation(s)
- Felix Unglaube
- Leibniz-Institut für Katalyse e.V. (LIKAT)18059RostockGermany
| | | | | | - Michael Lalk
- Institut für BiochemieUniversität Greifswald17489GreifswaldGermany
| | - Esteban Mejía
- Leibniz-Institut für Katalyse e.V. (LIKAT)18059RostockGermany
| |
Collapse
|
25
|
Büchner F, Hoffman M, Dobermann UH, Edel B, Lehmann T, Kipp F. Do closed waste containers lead to less air contamination than opened? A clinical case study at Jena University Hospital, Germany. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:11-17. [PMID: 34634566 DOI: 10.1016/j.wasman.2021.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Nosocomial infections are a growing challenge at hospitals. This clinical study aimed to investigate the influence of waste container construction ((open (O), closed (C), and hands-free opening (HF)) on microbial air contamination in a hospital setting. The results are intended to help develop guidelines for waste containers for the collection of non-infectious waste at hospitals and medical facilities. The clinical experiment was conducted at the University Hospital Jena, Germany. Air Impactor samples were performed and microbiologically evaluated for bacteria and fungi both quantitatively and qualitatively. The results were statistically determined using generalized estimating equations. Quantitatively, the lowest bacterial counts in ambient air were found around closed waste containers (114.74 CFU/m3) in comparison to HF (129.28 CFU/m3) and O (126.28 CFU/m3). For fungi, the surrounding air of C (2.08 CFU/m3) and HF (1.97 CFU/m3) waste containers showed a lower impact of fungal air contamination than for O (2.32 CFU/m3). Overall, it was shown that C are more preferable to HF and O waste containers from the point of view of microbial air contamination at hospitals.
Collapse
Affiliation(s)
- Franziskus Büchner
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Marc Hoffman
- Integrative Health and Security Management Center, Staff Section Environmental Protection, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Ute-Helke Dobermann
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Frank Kipp
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|