1
|
Gao Y, Xue Y, Sun C, She L, Peng Y. Emission Characteristics of Volatile Organic Compounds from Material Extrusion Printers Using Acrylonitrile-Butadiene-Styrene and Polylactic Acid Filaments in Printing Environments and Their Toxicological Concerns. TOXICS 2025; 13:276. [PMID: 40278591 PMCID: PMC12031625 DOI: 10.3390/toxics13040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
The utilization of 3D printing releases a multitude of harmful gas pollutants, posing potential health risks to operators. Materials extrusion (ME; also known as fused deposition modeling (FDM)), a widely adopted 3D printing technology, predominantly employs acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA) as printing materials, with the respective market shares of these materials reaching approximately 75%. The extensive usage of ABS and PLA during the ME process leads to significant volatile organic compound (VOC) emissions, thereby deteriorating the quality of indoor air. Nevertheless, information regarding the emission characteristics of VOCs and their influencing factors, as well as the toxicological impacts of the printing processes, remains largely unknown. Herein, we thoroughly reviewed the emission characteristics of VOCs released during ME printing processes using ABS and PLA in various printing environments, such as chambers, laboratories, and workplaces, as well as their potential influencing factors under different environmental conditions. A total of 62 VOC substances were identified in chamber studies using ABS and PLA filaments; for example, styrene had an emission rate of 0.29-113.10 μg/min, and isopropyl alcohol had an emission rate of 3.55-56.53 μg/min. Emission rates vary depending on the composition of the filament's raw materials, additives (such as dyes and stabilizers), printing conditions (temperature), the printer's condition (whether it has closure), and other factors. Additionally, we reviewed the toxicological concerns associated with hazardous VOC species commonly detected during the ME printing process and estimated cancer and non-cancer risks for users after long-term inhalation exposure. Potential health hazards associated with inhalation exposure to benzene, formaldehyde, acetaldehyde, styrene, and other substances were identified, which were calculated based on concentrations measured in real indoor environments. This study provides valuable insights for future research on the development of ME printing technologies and offers suggestions to reduce VOC emissions to protect users.
Collapse
Affiliation(s)
- Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; (Y.G.); (Y.X.)
| | - Yawei Xue
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; (Y.G.); (Y.X.)
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (C.S.); (L.S.)
| | - Chenyang Sun
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (C.S.); (L.S.)
- State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration, Guangdong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
- Zhuhai Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Beijing Normal University, Zhuhai 519087, China
| | - Luhang She
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (C.S.); (L.S.)
- State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration, Guangdong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
- Zhuhai Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Beijing Normal University, Zhuhai 519087, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; (C.S.); (L.S.)
- State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration, Guangdong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
- Zhuhai Key Laboratory of Coastal Environmental Processes and Ecological Restoration, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Arriaga-Dávila J, Rosero-Arias C, Jonker D, Córdova-Castro M, Zscheile J, Kirchner R, Aguirre-Soto A, Boyd R, De Leon I, Gardeniers H, Susarrey-Arce A. From Single to Multi-Material 3D Printing of Glass-Ceramics for Micro-Optics. SMALL METHODS 2025:e2401809. [PMID: 39901648 DOI: 10.1002/smtd.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Feynman's statement, "There is plenty of room at the bottom", underscores vast potential at the atomic scale, envisioning microscopic machines. Today, this vision extends into 3D space, where thousands of atoms and molecules are volumetrically patterned to create light-driven technologies. To fully harness their potential, 3D designs must incorporate high-refractive-index elements with exceptional mechanical and chemical resilience. The frontier, however, lies in creating spatially patterned micro-optical architectures in glass and ceramic materials of dissimilar compositions. This multi-material capability enables novel ways of shaping light, leveraging the interaction between diverse interfaced chemical compositions to push optical boundaries. Specifically, it encompasses both multi-material integration within the same architectures and the use of different materials for distinct architectural features in an optical system. Integrating fluid handling systems with two-photon lithography (TPL) provides a promising approach for rapidly prototyping such complex components. This review examines single and multi-material TPL processes, discussing photoresin customization, essential physico-chemical conditions, and the need for cross-scale characterization to assess optical quality. It reflects on challenges in characterizing multi-scale architectures and outlines advancements in TPL for both single and spatially patterned multi-material structures. The roadmap provides a bridge between research and industry, emphasizing collaboration and contributions to advancing micro-optics.
Collapse
Affiliation(s)
- Joel Arriaga-Dávila
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Cristian Rosero-Arias
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Dirk Jonker
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | | | - Josua Zscheile
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
| | - Robert Kirchner
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Robert Boyd
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA
| | - Israel De Leon
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
- ASML Netherlands B.V., De Run 6501, DR Veldhoven, 5504, The Netherlands
| | - Han Gardeniers
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
3
|
Sözen A, Neşer G. A Critical Systematic Scoping Review on the Applications of Additive Manufacturing (AM) in the Marine Industry. Polymers (Basel) 2024; 17:4. [PMID: 39795407 PMCID: PMC11723405 DOI: 10.3390/polym17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
(1) Background: Additive manufacturing (AM), which has also become known as 3D printing, is rapidly expanding its areas of use in the marine industry. This study undertakes a historical development of AM in the marine industry. The study also criticises these developments to date and the future technological applications they will lead to, while considering the benefits for the industry and its segments. (2) Methods: This review followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was registered in the Open Science Framework. The personalized search strategy was applied to Scopus, and Web of Science databases. The core emphasis was placed on two eligibility criteria throughout the evaluation process. Firstly, Criteria 1 sought to determine the paper's relevance to AM. Secondly, Criteria 2 aimed to assess whether the paper delves into the implementation of AM or provides valuable insights into its utilisation within the marine industry. The risk of bias was analysed using a checklist of important parameters to be considered. (3) Results: In recent years, there has been a growing trend in studies related to the application of AM in the marine industry. While AM is widespread in industries such as automotive, aviation, and healthcare, it is relatively new for the marine industry. Almost only 5% of publications related to AM are related to the marine industry. There is a need for extensive research in many areas. It has been observed that classification societies and approval institutions, which largely drive the marine industry, have not yet taken AM into consideration sufficiently. (4) Conclusions: The studies show that AM is very promising for the marine industry. However, there are new studies at the experimental and theoretical level that need to be carried out to determine the right materials and AM methods to establish the quality control methodology and the necessary classification rules. This review also emphazises AM's pivotal role in reshaping the marine industry, addressing the potential environmental and occupational safety effects of AM.
Collapse
Affiliation(s)
| | - Gökdeniz Neşer
- Institute of Marine Sciences and Technology, Dokuz Eylul University, 35340 Izmir, Türkiye;
| |
Collapse
|
4
|
Karwasz A, Osiński F, Kaczmarek W, Furmaniak K, Rojek I. The Influence of Polylactic Acid Filament Moisture Content on Dust Emissions in 3D Printing Process. SENSORS (BASEL, SWITZERLAND) 2024; 24:7890. [PMID: 39771629 PMCID: PMC11678983 DOI: 10.3390/s24247890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
This paper presents the results of a study on the effect of moisture content in polylactic acid (PLA) filaments on dust emissions during incremental manufacturing. The tests were conducted in a customised chamber using a standard 3D printer, and Plantower PMS3003 sensors were used to monitor air quality by measuring PM1, PM2.5 and PM10 concentrations. The filament humidity levels tested were 0.18%, 0.61% and 0.83%. The results show that a higher moisture content in the filament significantly increases dust emissions. For dry filaments (0.18% humidity), the average dust emissions ranged from 159 to 378 µg/m3. Slightly humid filaments (0.61%) produced higher emissions, with averages between 59 and 905 µg/m3, with one outlier reaching up to 1610 µg/m3. For very humid filaments (0.83%), the highest average emissions were observed, ranging from 57 to 325 µg/m3, along with greater variability (standard deviation up to 198). These findings highlight that increased filament humidity correlates with elevated dust emissions and greater instability in emission levels, raising potential health concerns during 3D printing.
Collapse
Affiliation(s)
- Anna Karwasz
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-138 Poznań, Poland; (A.K.); (F.O.)
| | - Filip Osiński
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-138 Poznań, Poland; (A.K.); (F.O.)
| | - Weronika Kaczmarek
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-138 Poznań, Poland; (A.K.); (F.O.)
| | - Kacper Furmaniak
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-138 Poznań, Poland; (A.K.); (F.O.)
| | - Izabela Rojek
- Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| |
Collapse
|
5
|
Chea JD, Ruiz-Mercado GJ, Smith RL, Meyer DE, Gonzalez MA, Barrett WM. Material Flow Analysis and Occupational Exposure Assessment in Additive Manufacturing End-of-Life Material Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9000-9012. [PMID: 38710661 PMCID: PMC11462493 DOI: 10.1021/acs.est.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Additive manufacturing (AM) offers a variety of material manufacturing techniques for a wide range of applications across many industries. Most efforts at process optimization and exposure assessment for AM are centered around the manufacturing process. However, identifying the material allocation and potentially harmful exposures in end-of-life (EoL) management is equally crucial to mitigating environmental releases and occupational health impacts within the AM supply chain. This research tracks the allocation and potential releases of AM EoL materials within the US through a material flow analysis. Of the generated AM EoL materials, 58% are incinerated, 33% are landfilled, and 9% are recycled by weight. The generated data set was then used to examine the theoretical occupational hazards during AM EoL material management practices through generic exposure scenario assessment, highlighting the importance of ventilation and personal protective equipment at all stages of AM material management. This research identifies pollution sources, offering policymakers and stakeholders insights to shape pollution prevention and worker safety strategies within the US AM EoL management pathways.
Collapse
Affiliation(s)
- John D Chea
- Oak Ridge Institute for Science and Education, Hosted by Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Gerardo J Ruiz-Mercado
- Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Chemical Engineering Graduate Program, Universidad del Atlántico, Puerto Colombia 080007, Colombia
| | - Raymond L Smith
- Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - David E Meyer
- Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Michael A Gonzalez
- Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - William M Barrett
- Office of Research & Development, US Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
6
|
Garcia-Gonzalez H, Lopez-Pola MT. Unlocking the nanoparticle emission potential: a study of varied filaments in 3D printing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31188-31200. [PMID: 38625471 DOI: 10.1007/s11356-024-33257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
This study investigates nanoparticle emission during 3D printing processes, assessing various filament materials' impact on air quality. Commonly used 3D printers, including both filament and resin-based types, were examined. The study's scope encompasses diverse filament materials like ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), PETG (polyethylene terephthalate glycol), ASA (acrylonitrile styrene acrylate), TPU (thermoplastic polyurethane), PP (polypropylene), nylon, and wood-based variants, alongside three types of resins. The research delves into the relationship between the type of material and nanoparticle emissions, emphasizing temperature's pivotal role. Measurement instruments were employed for nanoparticle quantification, including an engine exhaust particle sizer spectrometer, condensation particle counter, and nanozen dust counters. Notably, results reveal substantial variations in nanoparticle emissions among different filament materials, with ASA, TPU, PP, and ABS showing considerably elevated emission levels and characteristic particle size distribution patterns. The findings prompt practical recommendations for reducing nanoparticle exposure, emphasizing printer confinement, material selection, and adequate ventilation. This study offers insights into potential health risks associated with 3D printing emissions and provides a basis for adopting preventive measures.
Collapse
|
7
|
Gao D, Zhang C, Guo H, Xu H, Liu H, Wang Z, Xu B, Gang W. Low-dose polystyrene microplastics exposure impairs fertility in male mice with high-fat diet-induced obesity by affecting prostate function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123567. [PMID: 38367694 DOI: 10.1016/j.envpol.2024.123567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The harmful effects of microplastics (MPs) on male fertility are receiving more and more attention. However, the impact of low-dose MPs exposure on the reproductive function of male mice is still unclear. In this study, we exposed male mice to low-dose MPs (25-30 μg/kg body weight/day) or low-dose MPs combined with high-fat diet (HFD) feeding. Our results showed that low-dose MPs exposure or HFD feeding significantly reduced sperm quality and the number of offspring born, while low-dose MPs exposure combined with HFD feeding further enhanced the above effects. The combination of low-dose MPs exposure and HFD feeding resulted in a notable elevation of inflammatory level within the prostate of mice and induced apoptosis of prostate epithelium and a decrease in nutrients (zinc, citrate) in seminal plasma fluid. Our findings in this study could provide valuable clues for better understanding the influence of low-dose MPs exposure on the reproductive system under metabolic disorders and facilitate the development of the prevention of reproductive toxicity caused by MPs exposure.
Collapse
Affiliation(s)
- Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Caoxu Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Huaqi Guo
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Hui Liu
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Wei Gang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China; Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Felici G, Lachowicz JI, Milia S, Cannizzaro E, Cirrincione L, Congiu T, Jaremko M, Campagna M, Lecca LI. A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories. Front Public Health 2023; 11:1144475. [PMID: 37333549 PMCID: PMC10272752 DOI: 10.3389/fpubh.2023.1144475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction 3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. Methods Nanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. Results The SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm3, versus 2,203 particles/cm3 for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. Discussion Our study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer.
Collapse
Affiliation(s)
- Giorgio Felici
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Simone Milia
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Emanuele Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Luigi Cirrincione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| |
Collapse
|
9
|
Wakamori K, Nagata K, Nakashizu T, Tsuruoka H, Atsumi M, Kawana H. Comparative Verification of the Accuracy of Implant Models Made of PLA, Resin, and Silicone. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093307. [PMID: 37176189 PMCID: PMC10179293 DOI: 10.3390/ma16093307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Polylactic acid (PLA) has gained considerable attention as an alternative to petroleum-based materials due to environmental concerns. We fabricated implant models with fused filament fabrication (FFF) 3D printers using PLA, and the accuracies of these PLA models were compared with those of plaster models made from silicone impressions and resin models made with digital light processing (DLP). A base model was obtained from an impact-training model. The scan body was mounted on the plaster, resin, and PLA models obtained from the base model, and the obtained information was converted to stereolithography (STL) data by the 3D scanner. The base model was then used as a reference, and its data were superimposed onto the STL data of each model using Geomagic control. The horizontal and vertical accuracies of PLA models, as calculated using the Tukey-Kramer method, were 97.2 ± 48.4 and 115.5 ± 15.1 μm, respectively, which suggests that the PLA model is the least accurate among the three models. In both cases, significant differences were found between PLA and gypsum and between the PLA and resin models. However, considering that the misfit of screw-retained implant frames should be ≤150 µm, PLA can be effectively used for fabricating implant models.
Collapse
Affiliation(s)
- Kana Wakamori
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Koudai Nagata
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Toshifumi Nakashizu
- Division of the Dental Practice Support, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Hayato Tsuruoka
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Mihoko Atsumi
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Hiromasa Kawana
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| |
Collapse
|
10
|
López M, López-Lilao A, Romero F, Pérez-Albaladejo E, Pinteño R, Porte C, Balasch A, Eljarrat E, Viana M, Monfort E. Size-resolved chemical composition and toxicity of particles released from refit operations in shipyards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163072. [PMID: 36990238 DOI: 10.1016/j.scitotenv.2023.163072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
Ship refit and repair operations in shipyards generate aerosol emissions with high potential for environmental impacts. Metal-bearing nano-, fine and coarse particles are incidentally formed and can be released to indoor and ambient air and the aquatic environment. This work aimed to further the understanding of these impacts by characterising particle size-resolved chemical composition (15 nm - 10 μm), organophosphate esters (OPEs) content (e.g., plasticisers) and cytotoxic and genotoxic potential. Results showed that nanoparticle emissions (20-110 nm) took place in bursts, coinciding with the use of mechanical abraders and spray-painting guns. Tracers of these activities were Sc, V, Cr, Co, Ni, Cu, Rb, Nb, and Cs. Key components were V and Cu, probably sourcing from nanoadditives in the coatings. Abrasion of coatings also emitted OPEs, especially from old paints. Toxicity assessments consistently evidenced hazardous potential for the different endpoints assessed, for a number of samples. Exposures to spray-painting aerosols were linked with reduced cell viability (cytotoxicity), significant generation of reactive oxygen species (ROS), and increases in micronuclei frequency (genotoxicity). Even though spray-painting did not contribute significantly to aerosol mass or number concentrations, it was a major driver of potential health effects. Results suggest that aerosol chemical composition (e.g., content in nano-sized Cu or V) may have a larger impact on toxicity than aerosol concentration. While direct human exposures may be prevented using personal and collective protective equipment and environmental release can be minimised by enclosures and filtration systems, impacts on ambient air and the aquatic environment cannot be fully prevented. The continued use of good practices (exhaust, dilution, general ventilation systems, PPE, already in place) is encouraged to reduce inhalation exposures inside the tents. Understanding the size-resolved chemical and toxicological properties of aerosols is key to reducing human health and environmental impacts of ship refit operations in shipyards.
Collapse
|
11
|
Nagata K, Inaba K, Kimoto K, Kawana H. Accuracy of Dental Models Fabricated Using Recycled Poly-Lactic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2620. [PMID: 37048914 PMCID: PMC10096089 DOI: 10.3390/ma16072620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Based on the hypothesis that the fabrication of dental models using fused deposition modeling and poly-lactic acid (PLA), followed by recycling and reusing, would reduce industrial waste, we aimed to compare the accuracies of virgin and recycled PLA models. The PLA models were recycled using a crusher and a filament-manufacturing machine. Virgin PLA was labeled R, and the first, second, and third recycles were labeled R1, R2, and R3, respectively. To determine the accuracies of the virgin and reused PLA models, identical provisional crowns were fitted, and marginal fits were obtained using micro-computed tomography. A marginal fit of 120 µm was deemed acceptable based on previous literature. The mesial, distal, buccal, and palatal centers were set at M, D, B, and P, respectively. The mean value of each measurement point was considered as the result. When comparing the accuracies of R and R1, R2, and R3, significant differences were noted between R and R3 at B, R and R2, R3 at P, and R and R3 at D (p < 0.05). No significant difference was observed at M. This study demonstrates that PLA can be recycled only once owing to accuracy limitations.
Collapse
Affiliation(s)
- Koudai Nagata
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Katsuhiko Kimoto
- Department of Fixed Prosthodontics, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Hiromasa Kawana
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| |
Collapse
|
12
|
Nagata K, Muromachi K, Kouzai Y, Inaba K, Inoue E, Fuchigami K, Nihei T, Atsumi M, Kimoto K, Kawana H. Fit accuracy of resin crown on a dental model fabricated using fused deposition modeling 3D printing and a polylactic acid filament. J Prosthodont Res 2023; 67:144-149. [PMID: 35466158 DOI: 10.2186/jpr.jpr_d_21_00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose We considered the possibility of reducing industrial waste by fabricating and reusing dental models prepared using a fused deposition modeling (FDM) 3D printer and polylactic acid (PLA) filaments. The purpose of this study was to verify the accuracy of models fabricated using FDM and PLA.Methods The same provisional crown was used to check the marginal fit on PLA models prepared using an intraoral scanner (IOS) and FDM, plaster models made with silicone impression material and plaster, and resin models prepared using an IOS and stereolithography apparatus (SLA) 3D printer. The marginal fit was measured using micro-computed tomography at four points on the tooth: the buccal center (B), palatal center (P), mesial center (M), and distal center (D) points.Results At point B, the marginal gaps were 118 ± 21.7, 62 ± 16.4, and 50 ± 26.5 μm for the PLA, resin, and plaster models, respectively, with a significant difference between the PLA model and the other two. However, the marginal gap at all other measurement points was not significantly different between the models (P > 0.05).Conclusions We compared the accuracy of the models fabricated using the FDM, SLA, and conventional methods. The combination of FDM and PLA filaments showed no significant differences from the other models, except at point B, indicating its usefulness. Therefore, FDM and PLA may become necessary materials for dental treatment in the future.
Collapse
Affiliation(s)
- Koudai Nagata
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, Yokosuka, Japan
| | - Koichiro Muromachi
- Department of Pulp Biology and Endodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Yusuke Kouzai
- Department of Education Planning, Kanagawa Dental University, Yokosuka, Japan
| | - Keitaro Inaba
- Department of Oral Microbiology, Kanagawa Dental University, Yokosuka, Japan
| | - Erika Inoue
- Division of the Dental practice support, Kanagawa Dental University, Yokosuka, Japan
| | - Kei Fuchigami
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, Yokosuka, Japan
| | - Tomotaro Nihei
- Department of Clinical Biomaterials, Kanagawa Dental University, Yokosuka, Japan
| | - Mihoko Atsumi
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Katsuhiko Kimoto
- Department of Fixed Prosthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Hiromasa Kawana
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, Yokosuka, Japan
| |
Collapse
|
13
|
Simorgh S, Alasvand N, Khodadadi M, Ghobadi F, Malekzadeh Kebria M, Brouki Milan P, Kargozar S, Baino F, Mobasheri A, Mozafari M. Additive manufacturing of bioactive glass biomaterials. Methods 2022; 208:75-91. [PMID: 36334889 DOI: 10.1016/j.ymeth.2022.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity and biocompatibility). In addition, the reported studies have confirmed that BG-reinforced constructs can improve osteogenic, angiogenic, and antibacterial activities. This review aims to provide an up-to-date report on the development of BG-containing raw biomaterials that are currently being employed for the fabrication of 3D printed scaffolds used in tissue regeneration applications with a focus on their advantages and remaining challenges.
Collapse
Affiliation(s)
- Sara Simorgh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Alasvand
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
14
|
Bowers LN, Stefaniak AB, Knepp AK, LeBouf RF, Martin SB, Ranpara AC, Burns DA, Virji MA. Potential for Exposure to Particles and Gases throughout Vat Photopolymerization Additive Manufacturing Processes. BUILDINGS (BASEL, SWITZERLAND) 2022; 12:10.3390/buildings12081222. [PMID: 37961074 PMCID: PMC10641710 DOI: 10.3390/buildings12081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vat photopolymerization (VP), a type of additive manufacturing process that cures resin to build objects, can emit potentially hazardous particles and gases. We evaluated two VP technologies, stereolithography (SLA) and digital light processing (DLP), in three separate environmental chambers to understand task-based impacts on indoor air quality. Airborne particles, total volatile organic compounds (TVOCs), and/or specific volatile organic compounds (VOCs) were monitored during each task to evaluate their exposure potential. Regardless of duration, all tasks released particles and organic gases, though concentrations varied between SLA and DLP processes and among tasks. Maximum particle concentrations reached 1200 #/cm3 and some aerosols contained potentially hazardous elements such as barium, chromium, and manganese. TVOC concentrations were highest for the isopropyl alcohol (IPA) rinsing, soaking, and drying post-processing tasks (up to 36.8 mg/m3), lowest for the resin pouring pre-printing, printing, and resin recovery post-printing tasks (up to 0.1 mg/m3), and intermediate for the curing post-processing task (up to 3 mg/m3). Individual VOCs included, among others, the potential occupational carcinogen acetaldehyde and the immune sensitizer 2-hydroxypropyl methacrylate (pouring, printing, recovery, and curing tasks). Careful consideration of all tasks is important for the development of strategies to minimize indoor air pollution and exposure potential from VP processes.
Collapse
Affiliation(s)
- Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Anand C. Ranpara
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Dru A. Burns
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
15
|
Experimental Study on the Thermal Performance of 3D-Printed Enclosing Structures. ENERGIES 2022. [DOI: 10.3390/en15124230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three-dimensional printing, or additive manufacturing, is one of the modern techniques emerging in the construction industry. Three-Dimensional Printed Concrete (3DPC) technology is currently evolving with high demand amongst researchers, and the integration of modular building systems with this technology would provide a sustainable solution to modern construction challenges. This work investigates and develops energy-efficient 3D-printable walls that can be implemented worldwide through energy efficiency and sustainability criteria. Numerical research and experimental investigations, bench tests with software packages, and high-precision modern equipment have been used to investigate the thermal performance of 3DPC envelopes with different types of configurations, arrangements of materials, and types of insulation. The research findings showed that an innovative energy-efficient ventilated 3DPC envelope with a low thermal conductivity coefficient was developed following the climatic zone. The annual costs of heat energy consumed for heating and carbon footprint were determined in the software package Revit Insight to assess the energy efficiency of the 3D-printed building. The thermal properties of the main wall body of the tested 3D-printed walls were calculated with on-site monitoring data. The infrared thermography technique detected heterogeneous and non-uniform temperature distributions on the exterior wall surface of the 3DPC tested envelopes.
Collapse
|
16
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. Exposure to chemical substances and particles emitted during additive manufacturing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40273-40278. [PMID: 35484457 DOI: 10.1007/s11356-022-20347-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing is an innovative technology that allows the production of three-dimensional objects replicating digital models. The aim of this study was to identify whether the use of this technology in a room without mechanical ventilation system may pose a health risk to its users due to the emission of chemical compounds and fine particles. Measurements were conducted in a furnished space with natural ventilation only, during additive manufacturing on a fused deposition modeling printer with 9 different filaments. Both chemicals and particles were sampled. Volatile organic compounds and phthalic acid esters were determined by gas chromatography-mass spectrometry detection. Carbonyl compounds were determined using the high-performance liquid chromatography with diode-array detection method. Fine particle emission studies were carried out using a DiSCmini particle counter (Testo). In the air samples, numerous chemical substances were identified including both the monomers of the individual materials used for printing such as styrene and other degradation products (formaldehyde, toluene, xylenes). Moreover, 3D printing process released particles with modal diameters ranging from 22.1 to 106.7 nm and increased the number concentration of particles in the workplace air. The results of analyses, depending on the type of material applied, showed the presence of particles and chemical substances in the working environment that may pose a risk to human health. Most of the identified substances can be harmful when inhaled and irritating to eyes and skin.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland.
| | - Dorota Kondej
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | - Joanna Kowalska
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | - Małgorzata Szewczyńska
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| |
Collapse
|
17
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
18
|
Fused Filament Fabrication 3D Printing: Quantification of Exposure to Airborne Particles. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fused Filament Fabrication (FFF) has been established as a widely practiced Additive Manufacturing technique, using various thermoplastic filaments. Carbon fibre (CF) additives enhance mechanical properties of the materials. The main operational hazard of the FFF technique explored in the literature is the emission of Ultrafine Particles and Volatile Organic Compounds. Exposure data regarding novel materials and larger scale operations is, however, still lacking. In this work, a thorough exposure assessment measurement campaign is presented for a workplace applying FFF 3D printing in various setups (four different commercial devices, including a modified commercial printer) and applying various materials (polylactic acid, thermoplastic polyurethane, copolyamide, polyethylene terephthalate glycol) and CF-reinforced thermoplastics (thermoplastic polyurethane, polylactic acid, polyamide). Portable exposure assessment instruments are employed, based on an established methodology, to study the airborne particle exposure potential of each process setup. The results revealed a distinct exposure profile for each process, necessitating a different safety approach per setup. Crucially, high potential for exposure is detected in processes with two printers working simultaneously. An updated engineering control scheme is applied to control exposures for the modified commercial printer. The establishment of a flexible safety system is vital for workplaces that apply FFF 3D printing.
Collapse
|
19
|
Abstract
Three-dimensional (3D) printing has introduced a paradigm shift in the manufacturing world, and it is increasing in popularity. In cases of such rapid and widespread acceptance of novel technologies, material or process safety issues may be underestimated, due to safety research being outpaced by the breakthroughs of innovation. However, a definitive approach in studying the various occupational or environmental risks of new technologies is a vital part of their sustainable application. In fused filament fabrication (FFF) 3D printing, the practicality and simplicity of the method are juxtaposed by ultrafine particle (UFP) and volatile organic compound (VOC) emission hazards. In this work, the decision of selecting the optimal material for the mass production of a microfluidic device substrate via FFF 3D printing is supported by an emission/exposure assessment. Three candidate prototype materials are evaluated in terms of their comparative emission potential. The impact of nozzle temperature settings, as well as the microfluidic device’s structural characteristics regarding the magnitude of emissions, is evaluated. The projected exposure of the employees operating the 3D printer is determined. The concept behind this series of experiments is proposed as a methodology to generate an additional set of decision-support decision-making criteria for FFF 3D printing production cases.
Collapse
|