1
|
Dolfi S, Decarli G, Lunardon M, De Filippo De Grazia M, Gerola S, Lanfranchi S, Cossu G, Sella F, Testolin A, Zorzi M. Weaker number sense accounts for impaired numerosity perception in dyscalculia: Behavioral and computational evidence. Dev Sci 2024; 27:e13538. [PMID: 38949566 DOI: 10.1111/desc.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Impaired numerosity perception in developmental dyscalculia (low "number acuity") has been interpreted as evidence of reduced representational precision in the neurocognitive system supporting non-symbolic number sense. However, recent studies suggest that poor numerosity judgments might stem from stronger interference from non-numerical visual information, in line with alternative accounts that highlight impairments in executive functions and visuospatial abilities in the etiology of dyscalculia. To resolve this debate, we used a psychophysical method designed to disentangle the contribution of numerical and non-numerical features to explicit numerosity judgments in a dot comparison task and we assessed the relative saliency of numerosity in a spontaneous categorization task. Children with dyscalculia were compared to control children with average mathematical skills matched for age, IQ, and visuospatial memory. In the comparison task, the lower accuracy of dyscalculics compared to controls was linked to weaker encoding of numerosity, but not to the strength of non-numerical biases. Similarly, in the spontaneous categorization task, children with dyscalculia showed a weaker number-based categorization compared to the control group, with no evidence of a stronger influence of non-numerical information on category choice. Simulations with a neurocomputational model of numerosity perception showed that the reduction of representational resources affected the progressive refinement of number acuity, with little effect on non-numerical bias in numerosity judgments. Together, these results suggest that impaired numerosity perception in dyscalculia cannot be explained by increased interference from non-numerical visual cues, thereby supporting the hypothesis of a core number sense deficit. RESEARCH HIGHLIGHTS: A strongly debated issue is whether impaired numerosity perception in dyscalculia stems from a deficit in number sense or from poor executive and visuospatial functions. Dyscalculic children show reduced precision in visual numerosity judgments and weaker number-based spontaneous categorization, but no increasing reliance on continuous visual properties. Simulations with deep neural networks demonstrate that reduced neural/computational resources affect the developmental trajectory of number acuity and account for impaired numerosity judgments. Our findings show that weaker number acuity in developmental dyscalculia is not necessarily related to increased interference from non-numerical visual cues.
Collapse
Affiliation(s)
- Serena Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Gisella Decarli
- Department of General Psychology, University of Padova, Padova, Italy
| | | | | | - Silvia Gerola
- Centro Medico di Foniatria - Casa di Cura Trieste, Padova, Italy
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Giuseppe Cossu
- Centro Medico di Foniatria - Casa di Cura Trieste, Padova, Italy
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Padova, Italy
- Department of Mathematics, University of Padova, Padova, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padova, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
2
|
Ampollini S, Ardizzi M, Ferroni F, Cigala A. Synchrony perception across senses: A systematic review of temporal binding window changes from infancy to adolescence in typical and atypical development. Neurosci Biobehav Rev 2024; 162:105711. [PMID: 38729280 DOI: 10.1016/j.neubiorev.2024.105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Sensory integration is increasingly acknowledged as being crucial for the development of cognitive and social abilities. However, its developmental trajectory is still little understood. This systematic review delves into the topic by investigating the literature about the developmental changes from infancy through adolescence of the Temporal Binding Window (TBW) - the epoch of time within which sensory inputs are perceived as simultaneous and therefore integrated. Following comprehensive searches across PubMed, Elsevier, and PsycInfo databases, only experimental, behavioral, English-language, peer-reviewed studies on multisensory temporal processing in 0-17-year-olds have been included. Non-behavioral, non-multisensory, and non-human studies have been excluded as those that did not directly focus on the TBW. The selection process was independently performed by two Authors. The 39 selected studies involved 2859 participants in total. Findings indicate a predisposition towards cross-modal asynchrony sensitivity and a composite, still unclear, developmental trajectory, with atypical development associated to increased asynchrony tolerance. These results highlight the need for consistent and thorough research into TBW development to inform potential interventions.
Collapse
Affiliation(s)
- Silvia Ampollini
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy.
| | - Martina Ardizzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Francesca Ferroni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Ada Cigala
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy
| |
Collapse
|
3
|
Gennari G, Dehaene S, Valera C, Dehaene-Lambertz G. Spontaneous supra-modal encoding of number in the infant brain. Curr Biol 2023; 33:1906-1915.e6. [PMID: 37071994 DOI: 10.1016/j.cub.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
The core knowledge hypothesis postulates that infants automatically analyze their environment along abstract dimensions, including numbers. According to this view, approximate numbers should be encoded quickly, pre-attentively, and in a supra-modal manner by the infant brain. Here, we directly tested this idea by submitting the neural responses of sleeping 3-month-old infants, measured with high-density electroencephalography (EEG), to decoders designed to disentangle numerical and non-numerical information. The results show the emergence, in approximately 400 ms, of a decodable number representation, independent of physical parameters, that separates auditory sequences of 4 vs. 12 tones and generalizes to visual arrays of 4 vs. 12 objects. Thus, the infant brain contains a number code that transcends sensory modality, sequential or simultaneous presentation, and arousal state.
Collapse
Affiliation(s)
- Giulia Gennari
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Collège de France, Université Paris Sciences Lettres (PSL), 75005 Paris, France
| | - Chanel Valera
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit U992, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale/Institut Joliot, Centre National de la Recherche Scientifique ERL9003, NeuroSpin Center, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Decarli G, Piazza M, Izard V. Are infants' preferences in the number change detection paradigm driven by sequence patterns? INFANCY 2023; 28:206-217. [PMID: 36135719 DOI: 10.1111/infa.12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inter-individual differences in infants' numerosity processing have been assessed using a change detection paradigm, where participants were presented with two concurrent streams of images, one alternating between two numerosities and the other showing one constant numerosity. While most infants look longer at the changing stream in this paradigm, the reasons underlying these preferences have remained unclear. We suggest that, besides being attracted by numerosity changes, infants perhaps also respond to the alternating pattern of the changing stream. We conducted two experiments (N = 32) with 6-month-old infants to assess this hypothesis. In the first experiment, infants responded to changes in numerosity even when the changing stream showed numerosities in an unpredictable random order. In the second experiment, infants did not display any preference when an alternating stream was pitted against a random stream. These findings do not provide evidence that the alternating pattern of the changing stream contributes to drive infants' preferences. Instead, around the age of 6 months, infants' responses in the numerosity change detection paradigm appear to be mainly driven by changes in numerosity, with different levels of preference reflecting inter-individual difference in the acuity of numerosity perception.
Collapse
Affiliation(s)
- Gisella Decarli
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Véronique Izard
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| |
Collapse
|
5
|
Decarli G, Veggiotti L, de Hevia MD. The link between number and action in human infants. Sci Rep 2022; 12:3371. [PMID: 35233030 PMCID: PMC8888547 DOI: 10.1038/s41598-022-07389-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Humans' inborn ability to represent and manipulate numerical quantities is supported by the parietal cortex, which is also involved in a variety of spatial and motor abilities. While the behavioral links between numerical and spatial information have been extensively studied, little is known about the connection between number and action. Some studies in adults have shown a series of interference effects when simultaneously processing numerical and action information. We investigated the origins of this link by testing forty infants (7- to 9-month-old) in one of two experimental conditions: one group was habituated to congruent number-hand pairings, where the larger the number, the more open the hand-shape associated; the second group was habituated to incongruent number-hand pairings, where the larger the number, the more close the hand-shape associated. In test trials, both groups of infants were presented with congruent and incongruent pairings. We found that only infants habituated to congruency showed a significantly higher looking time to the test trial depicting incongruent pairings. These findings show for the first time that infants spontaneously associate magnitude-related changes across the dimensions of number and action-related information, thus offering support to the existence of an early, preverbal number-action link in the human mind.
Collapse
Affiliation(s)
- Gisella Decarli
- Université de Paris, INCC UMR 8002, CNRS, 75006, Paris, France
- Integrative Neuroscience and Cognition Center-CNRS UMR 8002, CNRS, Université de Paris, 45 Rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Ludovica Veggiotti
- Université de Paris, INCC UMR 8002, CNRS, 75006, Paris, France
- Integrative Neuroscience and Cognition Center-CNRS UMR 8002, CNRS, Université de Paris, 45 Rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Maria Dolores de Hevia
- Université de Paris, INCC UMR 8002, CNRS, 75006, Paris, France.
- Integrative Neuroscience and Cognition Center-CNRS UMR 8002, CNRS, Université de Paris, 45 Rue des Saints Pères, 75270, Paris Cedex 06, France.
| |
Collapse
|