1
|
He L, Zhao N, Chen X, Zhang W, Lv K, Xu Y. Platelet-rich plasma-derived exosomes accelerate the healing of diabetic foot ulcers by promoting macrophage polarization toward the M2 phenotype. Clin Exp Med 2025; 25:163. [PMID: 40372505 PMCID: PMC12081558 DOI: 10.1007/s10238-025-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Diabetic foot ulcers (DFUs) impose a significant clinical and socioeconomic burden on patients and healthcare systems. Although platelet-rich plasma (PRP) and platelet-rich plasma-derived exosomes (PRP-Exos) have emerged as promising therapeutic agents in tissue regeneration, the mechanisms underlying the immunomodulatory effects of PRP and PRP-Exos-particularly their role in macrophage polarization-remain poorly understood. In this study, we isolated and characterized PRP-Exos and systematically evaluated their therapeutic potential in diabetic wound healing via comprehensive in vivo and in vitro experiments. Our results revealed that both PRP-gel and PRP-Exos significantly enhanced diabetic wound healing by promoting macrophage polarization toward the anti-inflammatory M2 phenotype. These findings suggest that PRP-Exos represent a novel and effective therapeutic strategy for DFUs, providing a robust rationale for future clinical translation.
Collapse
Affiliation(s)
- Ling He
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui, China
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Nan Zhao
- Academy of Laboratory Medicine, Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xiaoling Chen
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Wenjie Zhang
- Blood transfusion department of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Kun Lv
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China.
| |
Collapse
|
2
|
Huang S, Li Q, Li X, Ye H, Zhang L, Zhu X. Recent Research Progress of Wound Healing Biomaterials Containing Platelet-Rich Plasma. Int J Nanomedicine 2025; 20:3961-3976. [PMID: 40191044 PMCID: PMC11970316 DOI: 10.2147/ijn.s506677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Platelet-Rich Plasma (PRP) is a plasma product obtained by centrifuging autologous blood, containing a high concentration of platelets, white blood cells, and fibrin. PRP is enriched with various growth factors, such as Transforming Growth Factor-beta (TGF-β), Platelet-Derived Growth Factor (PDGF), Epidermal Growth Factor (EGF), Insulin-Like Growth Factor (IGF), and Vascular Endothelial Growth Factor (VEGF), all of which promote tissue growth and repair. Currently, PRP has been widely applied in the clinical field of wound repair and has achieved certain therapeutic effects. Biomaterials, as an important direction in the treatment of wounds, combined with PRP, provide new possibilities to enhance the regenerative repair of wounds by PRP. This article reviews the latest research progress of biomaterials combined with PRP in the treatment of wounds, aiming to provide references for PRP wound treatment, as well as to provide ideas for the development of subsequent medical materials.
Collapse
Affiliation(s)
- Sha Huang
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Qing Li
- Department of Electrocardiogram, The Second Affiliated Hospital, Zhejiang University School of College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangyu Li
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Hailing Ye
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Luyang Zhang
- Department of Plastic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoyi Zhu
- Department of General Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, People’s Republic of China
- Department of General Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Elainein MAA, Whdan MM, Samir M, Hamam NG, Mansour M, Mohamed MAM, Snosy MM, Othman MA, Sobieh AS, Saad MG, Labna MA, Allam S. Therapeutic potential of adipose-derived stem cells for diabetic foot ulcers: a systematic review and meta-analysis. Diabetol Metab Syndr 2025; 17:9. [PMID: 39773633 PMCID: PMC11706097 DOI: 10.1186/s13098-024-01523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND As the global prevalence of diabetes mellitus increases, the incidence of non-healing wounds in diabetic patients is expected to rise significantly, according to the International Diabetes Federation (IDF), around 537 million adults currently suffer from diabetes mellitus worldwide and 20% to 30% of individuals with diabetes are hospitalized due to diabetic foot ulcers. Conventional treatments such as traditional dressings often fall short in ensuring satisfactory wound healing, this Meta-analysis investigates the therapeutic potential of Adipose-derived Stem Cells (ADSCs) as a promising strategy for addressing this challenge. AIMS To Assess the Therapeutic Potential of Adipose-Derived Stem Cells for Managing Diabetic Foot Ulcers compared to conventional lines of treatments. METHODS The PubMed, SCOPUS, Web of Science Core Collection, Cochrane Library, and ClinicalTrials.gov. databases were searched from January 2000 and December 2023, articles were primarily evaluated regarding their titles and abstracts, then full-text screening was assessed against the inclusion and exclusion criteria by utilizing Rayyan software. The Cochrane risk of bias (RoB 2) assessment tool was used to identify the risk of bias in our included studies. A statistical analysis was performed using Review Manager (RevMan) Version 5 software. Dichotomous data was subjected to risk ratio analysis, while continuous data underwent Mean Difference (MD) evaluation, all was reported with 95% confidence intervals, P value is considered statistically significant if less than 0.05. RESULTS Regarding the total healing state, five studies reported that more participants healed completely at the end of the follow-up period in the ADSCs group (Risk ratio = 1.56, 95% CI [1.32, 1.86], P < 0.00001), for the healing rate the overall effect estimate favors the ADSCs group (pooled effect estimate = 1.84, 95% CI [1.51, 2.89], P < 0.00001), and regarding the healing time the pooled mean difference of the studies demonstrated that the ADSCs group required fewer days to heal than the standard care group. (pooled mean difference = -19.33, 95% CI [-37.36, -1.29], P = 0.04). CONCLUSION ADSCs provide favorable healing results and safety compared to standard care for diabetic foot ulcers.
Collapse
Affiliation(s)
| | | | - Mahmoud Samir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada G Hamam
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | | - Salma Allam
- Faculty of Medicine, Galala University, Suez, Egypt.
| |
Collapse
|
4
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 2 - A scoping review of physical biomarkers. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43716. [PMID: 39990247 PMCID: PMC11844764 DOI: 10.33137/cpoj.v7i2.43716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND The timely provision of load-bearing prostheses significantly reduces healthcare costs and lowers post-amputation mortality risk. However, current methods for assessing residuum health remain subjective, underscoring the need for standardized, evidence-based approaches incorporating physical biomarkers to evaluate residual limb healing and determine readiness for prosthetic rehabilitation. OBJECTIVES This review aimed to identify predictive, diagnostic, and indicative physical biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following Joanna Briggs Institute (JBI) and PRISMA-ScR guidance. Searches using "biomarkers", "wound healing", and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to physical biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system), and categorized by study, wound, and model type. Physical biomarkers that were repeated not just within categories, but across more than one of the study categories were reported on. FINDINGS The search strategy identified 3,306 sources, 157 of which met the inclusion criteria. Histology was the most frequently repeated physical biomarker used in 64 sources, offering crucial diagnostic insights into cellular healing processes. Additional repeated indicative and predictive physical biomarkers, including ankle-brachial index, oxygenation measures, perfusion, and blood pulse and pressure measurements, were reported in 25, 19, 13, and 12 sources, respectively, providing valuable data on tissue oxygenation and vascular health. CONCLUSION Ultimately, adopting a multifaceted approach that integrates a diverse array of physical biomarkers (accounting for physiological factors and comorbidities known to influence healing) may substantially enhance our understanding of the healing process and inform the development of effective rehabilitation strategies for individuals undergoing amputation.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
5
|
Smith J, Rai V. Platelet-Rich Plasma in Diabetic Foot Ulcer Healing: Contemplating the Facts. Int J Mol Sci 2024; 25:12864. [PMID: 39684575 PMCID: PMC11641766 DOI: 10.3390/ijms252312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetic foot ulcers (DFUs), debilitating complication of diabetes, often lead to amputation even in the presence of current advanced treatment for DFUs. Platelet-rich plasma (PRP) containing growth factors and other proteins has been suggested as a potent therapeutic in promoting DFU healing. PRP is safe and effective in improving the DFU healing rate, decreasing healing time, and making chronic wounds viable for treatment. Though PRP is safe and effective in promoting DFU healing, there are inconsistencies in clinical outcomes. These varying results may be due to various concentrations of PRP being used. Most studies report dosage and timing, but none have reported the concentration of various factors. This is important, as the concentration of factors in PRP can vary significantly with each preparation and may directly impact the healing outcome. This critical review discusses the limiting factors and issues related to PRP therapy and future directives. A systematic search of PubMed and Google Scholar was performed with keywords including diabetic foot ulcer, ulcer healing, platelet-rich plasma, DFU treatment, and PRP limitations and efficacy, alone or in combination, to search the related articles. The articles describing DFU and the use of PRP in DFU healing were included. The existing literature suggests that PRP is effective and safe for promoting DFU healing, but larger clinical trials are needed to improve clinical outcomes. There is a need to consider multiple factors including the role of epigenetics, lifestyle modification, and the percentage composition of each constituent in PRP.
Collapse
Affiliation(s)
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
6
|
Williams-Reid H, Johannesson A, Buis A. Wound management, healing, and early prosthetic rehabilitation: Part 1 - A scoping review of healing and non-healing definitions. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2024; 7:43715. [PMID: 39990241 PMCID: PMC11844765 DOI: 10.33137/cpoj.v7i2.43715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Following lower limb amputation, timely prosthetic fitting enhances mobility and quality of life. However, inconsistent definitions of surgical site healing complicate prosthesis readiness assessment and highlight the need for objective wound management measures. OBJECTIVE This review aimed to compile definitions of healing and non-healing provided in the literature investigating biomarkers of healing of the tissues and structures found in the residual limbs of adults with amputation. METHODOLOGY A scoping review was conducted following JBI and PRISMA-ScR guidance. Searches using "biomarkers," "wound healing," and "amputation" were performed on May 6, 2023, on Web of Science, Ovid MEDLINE, Ovid Embase, Scopus, Cochrane, PubMed, and CINAHL databases. Inclusion criteria were: 1) References to biomarkers and healing; 2) Residuum tissue healing; 3) Clear methodology with ethical approval; 4) Published from 2017 onwards. Articles were assessed for quality (QualSyst tool) and evidence level (JBI system). FINDINGS Of 3,306 articles screened, 219 met the inclusion criteria and are reviewed in this article, with 77% rated strong quality. 43% of all included sources did not define healing, while the remainder used specific criteria including epithelialization (14%), wound size reduction (28%), gradings scales (3%), scarring (1%), absence of wound complications (2%), hydroxyproline levels (0.5%), no amputation (0.5%), or neovascularization (0.5%). 84% of included sources did not provide definitions of non-healing. Studies defining non-healing used criteria like wound complications (4%), the need for operative interventions (4%), or lack of wound size reduction (1%). For 10% of included sources, healing and non-healing definitions were considered not applicable given the research content. Total percentages exceed 100% for both healing and non-healing definitions because some sources used two definition classifications, such as epithelialization and wound size reduction. The findings indicate a lack of standardized definitions irrespective of study type. CONCLUSION This review reveals significant gaps in current definitions of healing and non-healing, often based on superficial assessments that overlook deeper tissue healing and mechanical properties essential for prosthesis use. It emphasizes the need for comprehensive definitions incorporating biomarkers and psychosocial factors to improve wound management and post-amputation recovery.
Collapse
Affiliation(s)
- H Williams-Reid
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| | | | - A Buis
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
7
|
Xiao Y, Nie M, Xu W, Zhang J, Lei S, Wu D. The efficiency of human fat products in wound healing: A systematic review and meta-analysis. Int Wound J 2024; 21:e70016. [PMID: 39216014 PMCID: PMC11365526 DOI: 10.1111/iwj.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Wound development and healing involve intricate genetic and molecular processes, posing significant clinical management challenges. The objective of this study was to assess commonly used fat extracts' efficacy and safety (autologous fat, stromal vascular fraction and adipose-derived stem cells) in wound healing, particularly for refractory wounds, with the goal of providing evidence in clinical use. After a systematic review, 21 randomised controlled trials were included in our study. Based on the classification of human fat products, our meta-analysis revealed that the use of human fat products could speed healing rate, shorten healing time and achieve more complete healing, with statistically significant differences in outcome indicators when compared to conventional treatments. The analysis of histological findings across various studies indicated that fat extracts can promote epithelialization, collagen deposition and vascularization, thereby facilitating tissue regeneration and reducing inflammatory reactions. There were potential benefits to reducing patient pain levels after using adipose extracts. Furthermore, we analysed and summarised adverse events indicating the safe and effective clinical use of human fat products in wound treatment. Our research findings supported the efficiency of human fat products and demonstrated a high degree of safety in the clinical practice of wound management.
Collapse
Affiliation(s)
- Yutian Xiao
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| | - Mengqi Nie
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| | - Wenqing Xu
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| | - Jinglve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| | - Shaorong Lei
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| | - Dingyu Wu
- Department of Plastic and Cosmetic Surgery, Xiangya HospitalCentral South UniversityChangshaPR China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaPR China
| |
Collapse
|
8
|
Rui S, Dai L, Zhang X, He M, Xu F, Wu W, Armstrong DG, You Y, Xiao X, Ma Y, Chen Y, Deng W. Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing. J Control Release 2024; 372:221-233. [PMID: 38909697 DOI: 10.1016/j.jconrel.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The utilization of platelet-rich plasma (PRP) has exhibited potential as a therapeutic approach for the management of diabetic foot ulcers (DFUs). However, it is currently not well understood how the diabetic environment may influence PRP-derived exosomes (PRP-Exos) and their potential impact on neutrophil extracellular traps (NETs). This study aims to investigate the effects of the diabetic environment on PRP-Exos, their communication with neutrophils, and the subsequent influence on NETs and wound healing. Through bulk-seq and Western blotting, we confirmed the increased expression of MMP-8 in DFUs. Additionally, we discovered that miRNA-26b-5p plays a significant role in the communication between DFUs and PRP-Exos. In our experiments, we found that PRP-Exos miR-26b-5p effectively improved diabetic wound healing by inhibiting NETs. Further tests validated the inhibitory effect of miR-26b-5p on NETs by targeting MMP-8. Both in vitro and in vivo experiments showed that miRNA-26b-5p from PRP-Exos promoted wound healing by reducing neutrophil infiltration through its targeting of MMP-8. This study establishes the importance of miR-26b-5p in the communication between DFUs and PRP-Exos, disrupting NETs formation in diabetic wounds by targeting MMP-8. These findings provide valuable insights for developing novel therapeutic strategies to enhance wound healing in individuals suffering from DFUs.
Collapse
Affiliation(s)
- Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Linrui Dai
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Xiaoshi Zhang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Min He
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Fan Xu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Yuehua You
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Ma
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| |
Collapse
|
9
|
Tseng SL, Kang L, Li ZJ, Wang LQ, Li ZM, Li TH, Xiang JY, Huang JZ, Yu NZ, Long X. Adipose-derived stem cells in diabetic foot care: Bridging clinical trials and practical application. World J Diabetes 2024; 15:1162-1177. [PMID: 38983804 PMCID: PMC11229965 DOI: 10.4239/wjd.v15.i6.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a critical medical challenge, significantly im-pairing the quality of life of patients. Adipose-derived stem cells (ADSCs) have been identified as a promising therapeutic approach for improving wound healing in DFUs. Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU, its clinical applications remain elusive. In this review, we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs. The review begins with a discussion of the classification and clinical management of diabetic foot conditions. It then discusses the current landscape of clinical trials, focusing on their geographic distribution, reported efficacy, safety profiles, treatment timing, administration techniques, and dosing considerations. Finally, the review discusses the preclinical strategies to enhance ADSC efficacy. This review shows that many trials exhibit biases in study design, unclear inclusion criteria, and intervention protocols. In conclusion, this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches, with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care.
Collapse
Affiliation(s)
- Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Beijing, Beijing 100021, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Streit-Ciećkiewicz DE, Szumiło J, Grzybowska ME, Futyma K. Influence of Platelet-Rich Plasma on Recurrent Vesicovaginal Fistula-A Histological and Immunohistochemical Study. J Clin Med 2024; 13:370. [PMID: 38256504 PMCID: PMC10815989 DOI: 10.3390/jcm13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Vesicovaginal fistula is a cause of deterioration in the quality of life. It is a communication between the bladder and vagina resulting in the uncontrollable leakage of urine through the vagina. Recently, regenerative methods have been used more frequently, and platelet-rich plasma is one of these methods. The functional properties of platelet-rich plasma are based on the synthesis and secretion of multiple growth factors released after platelet activation. The aim of this study was to investigate how platelet-rich plasma influences the condition of the tissue and the healing ability of the urothelium, vaginal epithelium and tissues surrounding the fistulous canal. The study included eight patients who had undergone the Latzko procedure aimed at closing the vesicovaginal fistula. Samples were collected during primary surgery without platelet-rich plasma and after failed surgery, during a second attempt. The specimens were subjected to histological and immunohistochemical evaluation. The histology demonstrated that in platelet-rich plasma patients, greater vascularization and wider subepithelial mucosa layering was observed. Inflammatory infiltration in the subepithelial layer was increased in platelet-rich plasma patients. No localization differences in growth factor proteins were found in either group, but in platelet-rich plasma-patients, the reactions were stronger. It can be concluded that the use of platelet-rich plasma improves the morphological structure of the injected tissues.
Collapse
Affiliation(s)
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Magdalena Emilia Grzybowska
- Department of Gynecology, Obstetrics and Neonatology, Medical University of Gdańsk, Ul. Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Konrad Futyma
- 2nd Department of Gynecology, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
11
|
Ababneh SK, Siyam AA, Alqaraleh M, Al-Rawashde FA, Abbas MM, Ababneh S, Al-Othman N, Ababneh IK, Alkhatib AJ. Exploring the Role of Ki67 in the Liver of Diabetic Rats. Mater Sociomed 2024; 36:250-256. [PMID: 39963446 PMCID: PMC11830229 DOI: 10.5455/msm.2024.36.250-256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 02/20/2025] Open
Abstract
Background Diabetes is not a single disease but rather, it is one aspect of metabolic syndrome. The pathologic aspects of diabetes involve cellular changes that need to be understood. Objective The main objective of this study was to explore the role of Ki67 in the liver of diabetic rats. Methods The study methodology involved the induction of diabetes in rats using Alloxan (120 mg/kg). A total of 20 albino rats were randomly assigned into two groups control group (N=10) and diabetes group (n=10). Diabetic group received the dose of alloxan, while the control group received similar dose of normal saline. Glucose level was monitored daily. After the end of the experiment (one -month period), all animals were terminated. Blood samples were taken to measure biochemical investigations including glucose, cholesterol, and triglycerides. Liver tissue was excised and washed with normal saline and fixed in buffered formalin (10%). Liver tissue was processed and stained by hematoxylin and eosin for routine histological examination and also stained by immunohistochemistry for Ki67 biomarker. Results The results revealed the efficacy of the diabetic model. All biochemical investigations were significantly higher in the diabetic group compared with that of control group (p<0.001). Histological studies showed the existence of morphological alterations in cells and fatty changes in the diabetic group compared with the control group. The expression of Ki67 was significantly higher in the diabetic group compared with that in the control group (p=0.011). Conclusion Taken together, diabetes has adverse effects on the spleen from a histological point of view, and from the expression of Ki67.
Collapse
Affiliation(s)
- Suha Khayri Ababneh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Zarqa, Jordan
| | - Ali Abu Siyam
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Jadara University, Irbid, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-salt, Jordan
| | - Futoon Abedrabbu Al-Rawashde
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-salt, Jordan
| | - Muna M. Abbas
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Zarqa, Jordan
| | - Sokiyna Ababneh
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Zarqa, Jordan
| | - Nihad Al-Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Palestine
| | - Islam Khayri Ababneh
- Nusaybah Al-Mazniyeh College for Midwifery, Nursing and Allied Medical Professions, Jordan
| | - Ahed J. Alkhatib
- Department of Legal Medicine, Toxicology and Forensic Medicine, Jordan University of Science and Technology, Jordan
| |
Collapse
|
12
|
Pixley JN, Cook MK, Singh R, Larrondo J, McMichael AJ. A comprehensive review of platelet-rich plasma for the treatment of dermatologic disorders. J DERMATOL TREAT 2023; 34:2142035. [PMID: 36318219 DOI: 10.1080/09546634.2022.2142035] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Platelet-rich plasma (PRP) offers anti-inflammatory and regenerative properties through angiogenesis, cell differentiation, and proliferation. Although studied in many dermatologic conditions, its efficacy is not well-understood. Our objective is to review the use and effectiveness of PRP for dermatologic conditions. A literature search was performed through PubMed and yielded 54 articles published between January 2000 and November 2021; articles written in English were reviewed. Intradermal injections were associated with increased hair density in androgenic alopecia. Successful treatment of inflammatory nail diseases with PRP has been reported. Improvement in psoriasis was described, but only two studies were available. PRP was associated with higher patient self-assessment scores of photoaging and fine lines. Treatment with PRP in melasma has been associated with improved subjective satisfaction, but not with objective measures of disease improvement. PRP can serve as a safe and potentially effective adjunct for hair loss, vitiligo, nonhealing wounds, photoaging, and acne scars. An important barrier to interpreting PRP research is lack of standardization of PRP preparation protocols, inconsistent clinical endpoints, and frequent combination treatments. However, PRP is relatively noninvasive, has a well-established safety profile, and patient satisfaction is often high as patients perceive great benefit from treatment with PRP.
Collapse
Affiliation(s)
- Jessica N Pixley
- Wake Forest Department of Dermatology, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Madison K Cook
- Wake Forest Department of Dermatology, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Rohan Singh
- Wake Forest Department of Dermatology, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Jorge Larrondo
- Wake Forest Department of Dermatology, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Amy J McMichael
- Wake Forest Department of Dermatology, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
13
|
OuYang H, Tang Y, Yang F, Ren X, Yang J, Cao H, Yin Y. Platelet-rich plasma for the treatment of diabetic foot ulcer: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1256081. [PMID: 38169990 PMCID: PMC10760804 DOI: 10.3389/fendo.2023.1256081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Background With the increasing incidence of diabetes, diabetic foot ulcer(DFU) has become one of the most common and serious complications in people with diabetes. DFU is associated with significant morbidity and mortality, and can also result in significant economic, social and public health burdens. Due to peripheral neuropathy, peripheral vascular disease, hyperglycemic environment, inflammatory disorders and other factors, the healing of DFU is impaired or delayed, resulting in the formation of diabetic chronic refractory ulcer. Because of these pathological abnormalities in DFU, it may be difficult to promote wound healing with conventional therapies or antibiotics, whereas platelet-rich plasma(PRP) can promote wound healing by releasing various bioactive molecules stored in platelets, making it more promising than traditional antibiotics. Therefore, the purpose of this systematic review is to summarize and analyze the efficacy of PRP in the treatment of DFU. Methods A literature search was undertaken in PubMed, CNKI, EMB-ASE, the Cochrane Library, the WanFang Database and the WeiPu Database by computer. Included controlled studies evaluating the efficacy of PRP in the treatment of diabetic foot ulcers. The data extraction and assessment are on the basis of PRISMA. Results Twenty studies were evaluated, and nineteen measures for the evaluation of the efficacy of PRP in DFU treatment were introduced by eliminating relevant duplicate measures. The efficacy measures that were repeated in various studies mainly included the rate of complete ulcer healing, the percentage of ulcer area reduction, the time required for ulcer healing, wound complications (including infection rate, amputation rate, and degree of amputation), the rate of ulcer recurrence, and the cost and duration of hospitalization for DFU, as well as subsequent survival and quality of life scores. One of the most important indicators were healing rate, ulcer area reduction and healing time. The meta-analysis found that PRP was significantly improve the healing rate(OR = 4.37, 95% CI 3.02-6.33, P < 0.001) and shorten the healing time(MD = -3.21, 95% CI -3.83 to -2.59,P < 0.001)of patients with DFU when compared to the conventional treatment, but there was no significant difference in reducing the of ulcer area(MD = 5.67, 95% CI -0.77 to 12.11,P =0.08>0.05 ). Conclusion The application of PRP to DFU can improve ulcer healing rate and shorten ulcer healing time, but more clinical data are needed to clarify some efficacy measures. At the same time, a standardized preparation process for PRP is essential.
Collapse
Affiliation(s)
- Hong OuYang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yi Tang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Fan Yang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xin Ren
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jing Yang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hongyi Cao
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yifan Yin
- Department of Nephrology, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
14
|
Rai V, Le H, Agrawal DK. Novel mediators regulating angiogenesis in diabetic foot ulcer healing. Can J Physiol Pharmacol 2023; 101:488-501. [PMID: 37459652 DOI: 10.1139/cjpp-2023-0193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A non-healing diabetic foot ulcer (DFU) is a debilitating clinical problem amounting to socioeconomic and psychosocial burdens. DFUs increase morbidity due to prolonged treatment and mortality in the case of non-treatable ulcers resulting in gangrene and septicemia. The overall amputation rate of the lower extremity with DFU ranges from 3.34% to 42.83%. Wound debridement, antibiotics, applying growth factors, negative pressure wound therapy, hyperbaric oxygen therapy, topical oxygen, and skin grafts are common therapies for DFU. However, recurrence and nonhealing ulcers are still major issues. Chronicity of inflammation, hypoxic environment, poor angiogenesis, and decreased formation of the extracellular matrix (ECM) are common impediments leading to nonhealing patterns of DFUs. Angiogenesis is crucial for wound healing since proper vessel formation facilitates nutrients, oxygen, and immune cells to the ulcer tissue to help in clearing out debris and facilitate healing. However, poor angiogenesis due to decreased expression of angiogenic mediators and matrix formation results in nonhealing and ultimately amputation. Multiple proangiogenic mediators and vascular endothelial growth factor (VEGF) therapy exist to enhance angiogenesis, but the results are not satisfactory. Thus, there is a need to investigate novel pro-angiogenic mediators that can either alone or in combination enhance the angiogenesis and healing of DFUs. In this article, we critically reviewed the existing pro-angiogenic mediators followed by potentially novel factors that might play a regulatory role in promoting angiogenesis and wound healing in DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
15
|
Czop JK, Jałowska M. Stem cells in plastic surgery and aesthetic medicine. Postepy Dermatol Alergol 2023; 40:504-509. [PMID: 37692263 PMCID: PMC10485752 DOI: 10.5114/ada.2023.130498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 09/12/2023] Open
Abstract
Stem cells (SCs) have multiple applications in today's medicine including aesthetic dermatology and plastic surgery. The purpose of this paper is to review some clinical use of mesenchymal SCs. The main focus was put on adipose tissue-derived stem cells (ADSCs) as these cells are easy to harvest and because of their properties showed great potential in many studies, where they proved to accelerate wound healing, reduce scars, cause hair regrowth, or rejuvenate skin. Furthermore, when added to lipofilling procedures, such as breast augmentation they enhance fat graft survival and provide satisfying results. Currently, many different strategies for using SCs in treatments are developed with great efficacy, however, there are still many limitations and concerns regarding their clinical use.
Collapse
Affiliation(s)
- Julia Katarzyna Czop
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Jałowska
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
17
|
Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Del Amo C, Fernández-San Argimiro X, Cascajo-Castresana M, Perez-Valle A, Madarieta I, Olalde B, Andia I. Wound-Microenvironment Engineering through Advanced-Dressing Bioprinting. Int J Mol Sci 2022; 23:ijms23052836. [PMID: 35269978 PMCID: PMC8911091 DOI: 10.3390/ijms23052836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
In patients with comorbidities, a large number of wounds become chronic, representing an overwhelming economic burden for healthcare systems. Engineering the microenvironment is a paramount trend to activate cells and burst-healing mechanisms. The extrusion bioprinting of advanced dressings was performed with novel composite bioinks made by blending adipose decellularized extracellular matrix with plasma and human dermal fibroblasts. Rheological and microstructural assessments of the composite hydrogels supported post-printing cell viability and proliferation over time. Embedded fibroblasts expressed steady concentrations of extracellular matrix proteins, including type 1, 3 and 4 collagens and fibronectin. ELISA assessments, multiplex protein arrays and ensuing bioinformatic analyses revealed paracrine activities corresponding to wound-healing activation through the modulation of inflammation and angiogenesis. The two modalities of advanced dressings, differing in platelet number, showed differences in the release of inflammatory and angiogenic cytokines, including interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conditioned media stimulated human-dermal-cell proliferation over time. Our findings open the door to engineering the microenvironment as a strategy to enhance healing.
Collapse
Affiliation(s)
- Cristina Del Amo
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
| | - Xabier Fernández-San Argimiro
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - María Cascajo-Castresana
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Arantza Perez-Valle
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
| | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (X.F.-S.A.); (M.C.-C.); (I.M.); (B.O.)
| | - Isabel Andia
- Regenerative Therapies, Bioprinting Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain; (C.D.A.); (A.P.-V.)
- Correspondence: ; Tel.: +34-60-941-9897
| |
Collapse
|