1
|
Yilmazer-Hanke D, O'Loughlin E, McDermott K. Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J Neurosci Res 2015; 94:486-503. [DOI: 10.1002/jnr.23689] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deniz Yilmazer-Hanke
- Department of Biomedical Sciences, School of Medicine; Creighton University; Omaha Nebraska
- Department of Anatomy and Neuroscience; University College; Cork Ireland
| | - Elaine O'Loughlin
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Ann Romney Centre for Neurologic Diseases, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Kieran McDermott
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Graduate Entry Medical School; University of Limerick; Limerick Ireland
| |
Collapse
|
2
|
Garganis K, Kokkinos V, Zountsas B. EEG-fMRI findings in late seizure recurrence following temporal lobectomy: A possible contribution of area tempestas. EPILEPSY & BEHAVIOR CASE REPORTS 2013; 1:157-60. [PMID: 25667852 PMCID: PMC4150631 DOI: 10.1016/j.ebcr.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
Late seizure relapses following temporal lobectomy for drug-resistant temporal lobe epilepsy occur in 18–30% of operated-on cases, and recent evidence suggests that a significant proportion of them are due to maturation and activation of proepileptic tissue having defied initial resection and located at the vicinity of or at a short distance from its borders, usually over the posterior medial, basal temporal-occipital, and lateral temporal regions. Experimental studies in animals and functional imaging studies in humans suggest that the area tempestas, a particular region of the basal-frontal piriform cortex, is critical for kindling and initiation and propagation of seizure activity arising from different cortical foci, especially limbic ones. This case report of a patient with late seizure relapse, three years following an initially successful right temporal lobectomy for ipsilateral medial temporal sclerosis, is the first one in the literature to demonstrate interictal EEG–fMRI evidence of significant BOLD signal changes over the inferior, basal and lateral temporal and temporooccipital cortices posterior to the resection margin, plus a significant BOLD signal change over the ipsilateral basal frontal region, closely corresponding to the piriform cortex/area tempestas. Our case study provides further functional imaging evidence in support of maturation/activation of proepileptic tissue located at the vicinity of the initial temporal lobe resection in cases of late seizure relapses and suggests, in addition, a possible role for the piriform cortex/area tempestas in the relapsing process.
Collapse
Affiliation(s)
- Kyriakos Garganis
- Corresponding author at: Epilepsy Center of Thessaloniki, “St. Luke's” Hospital, 55236, Panorama, Thessaloniki, Greece.
| | | | | |
Collapse
|
3
|
Caboclo LOSF, Neves RS, Jardim AP, Hamad APA, Centeno RS, Lancellotti CLP, Scorza CA, Cavalheiro EA, Yacubian EMT, Sakamoto AC. Surgical and postmortem pathology studies: contribution for the investigation of temporal lobe epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:945-52. [PMID: 23295424 DOI: 10.1590/s0004-282x2012001200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/17/2012] [Indexed: 11/21/2022]
Abstract
Pathology studies in epilepsy patients bring useful information for comprehending the physiopathology of various forms of epilepsy, as well as aspects related to response to treatment and long-term prognosis. These studies are usually restricted to surgical specimens obtained from patients with refractory focal epilepsies. Therefore, most of them pertain to temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) and malformations of cortical development (MCD), thus providing information of a selected group of patients and restricted regions of the brain. Postmortem whole brain studies are rarely performed in epilepsy patients, however they may provide extensive information on brain pathology, allowing the analysis of areas beyond the putative epileptogenic zone. In this article, we reviewed pathology studies performed in epilepsy patients with emphasis on neuropathological findings in TLE with MTS and MCD. Furthermore, we reviewed data from postmortem studies and discussed the importance of performing these studies in epilepsy populations.
Collapse
|
4
|
Fauser S, Essang C, Altenmüller DM, Staack A, Steinhoff BJ, Strobl K, Bast T, Schubert-Bast S, Doostkam S, Zentner J, Schulze-Bonhage A. Is there evidence for clinical differences related to the new classification of temporal lobe cortical dysplasia? Epilepsia 2013; 54:909-17. [PMID: 23551067 DOI: 10.1111/epi.12147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE The new International League Against Epilepsy (ILAE) classification for focal cortical dysplasia (FCD) differentiates between patients with isolated FCD (type 1) and FCD with an associated hippocampal sclerosis (HS) (type 3a). In contrast to the former FCD classification by Palmini, which considered only histologic features, the novel ILAE classification also relies on magnetic resonance imaging (MRI) findings and presumed pathogenesis. We investigated in a cohort of 100 patients with exclusively temporal FCD if the new subdivision of FCD is reflected in clinical characteristics. METHODS Thirty-one patients with FCD type 1 and 50 patients with FCD type 3a in the temporal lobe were included. In all patients MRI and histology of the FCD were available. Both patient groups were compared to 19 patients with temporal FCD type 2 with clearly different histologic appearance. KEY FINDINGS Patients with FCD type 1 and type 3a presented with similar clinical features in many respects. In univariate analyses, no statistically significant differences were found as to age at epilepsy onset (p = 0.07) and epilepsy surgery (p = 0.14), a normal appearing neocortical temporal lobe (p = 0.08) or diagnosis of FCD by visual inspection of MRI (p = 0.08), preoperative seizure frequency (p = 0.06), and the predominance of an epigastric aura (p = 0.08). The postoperative outcome was nearly identical 1 year (p = 0.8) and 2 (p = 0.8), 3 (p = 0.8), 5 (p = 0.7), and 8 (p = 1.0) years postoperatively. Only febrile seizures (p = 0.025) and an aura (p = 0.03) were significantly more frequently reported in patients with FCD type 3a. Similar results were obtained from a multivariate logistic regression analysis. Patients with FCD type 2 were more different: Compared to FCD type 3a, age at epilepsy surgery was significantly lower (p = 0.004) and auras (p = 0.005) were significantly less frequently reported. Epigastric auras (p = 0.04) and febrile seizures (p = 0.025) occurred significantly less frequently in patients with FCD type 2 without HS compared to FCD type 3a. The diagnosis of an FCD was significantly more frequently made (p = 0.03) by visual inspection of the MRI compared to FCD type 1. SIGNIFICANCE Clinical features did not allow to clear separation of temporal FCD types 1 and 3a. Statistically significant differences were seen in a history of febrile seizures and the occurrence of auras more common in FCD type 3a. However, FCD type 2 in the same localization but with different histology presented with further differences such as more frequent FCD diagnosis by visual inspection of MRI, earlier operation, and less frequent epigastric auras.
Collapse
Affiliation(s)
- Susanne Fauser
- Epilepsy Center, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Comparison of MRI features and surgical outcome among the subtypes of focal cortical dysplasia. Seizure 2012; 21:789-94. [DOI: 10.1016/j.seizure.2012.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/21/2022] Open
|
6
|
Affiliation(s)
- Ciğdem Ozkara
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | |
Collapse
|
7
|
Bae EK, Jung KH, Chu K, Lee ST, Kim JH, Park KI, Kim M, Chung CK, Lee SK, Roh JK. Neuropathologic and clinical features of human medial temporal lobe epilepsy. J Clin Neurol 2010; 6:73-80. [PMID: 20607046 PMCID: PMC2895227 DOI: 10.3988/jcn.2010.6.2.73] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose There is recent evidence of various types of morphological changes in the hippocampus of a rodent model of medial temporal lobe epilepsy (mTLE). However, little is known about such changes in humans. We examined the histological changes [i.e., neuronal loss, cell genesis, and granule cell dispersion (GCD)] in surgical hippocampal specimens taken from patients with mTLE. Methods Nissl staining, and nestin and Prox1 immunohistochemistry were performed on human hippocampal specimens obtained from patients with medically intractable mTLE, thus allowing the analysis of neuronal loss, cell genesis, and GCD, respectively. We also assessed the correlations between clinical parameters and the histopathologic findings. Results The degree of cell genesis in the granule cell layer was significantly correlated with the severity of GCD, history of childhood febrile seizures, and frequent generalized seizures. Cell genesis was not correlated with cell death, age at seizure onset, duration of epilepsy, or the mean frequency of all seizures. Conclusions Our results indicate that cell genesis in the dentate gyrus of patients with mTLE is associated with GCD and is influenced by the presence of febrile seizures during childhood and the frequency of episodes of generalized seizures.
Collapse
Affiliation(s)
- Eun-Kee Bae
- Stroke & Stem Cell Laboratory in Clinical Research Institute, Stem Cell Research Center, Department of Neurology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim DW, Lee SK, Nam H, Chu K, Chung CK, Lee SY, Choe G, Kim HK. Epilepsy with dual pathology: Surgical treatment of cortical dysplasia accompanied by hippocampal sclerosis. Epilepsia 2009; 51:1429-35. [DOI: 10.1111/j.1528-1167.2009.02403.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kasper BS, Chang BS, Kasper EM. Microdysgenesis: Historical roots of an important concept in epilepsy. Epilepsy Behav 2009; 15:146-53. [PMID: 19318132 DOI: 10.1016/j.yebeh.2009.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
Abstract
Microdysgenesis (MD) is a term used to refer to subtle brain dysplasia based on structural tissue characteristics seen exclusively under the microscope. Although MD is often referred to within the field of modern epileptology, the term and its implications have actually evolved over a long period in neurology, starting in the late 19th century. This article undertakes a careful evaluation of original publications in the epilepsy literature and demonstrates that the concept of MD is anchored within a set of papers written from 1890 to 1930 and their contemporaneous reception in classic neuropsychiatric handbooks. Both the text of these early publications and the development of the MD concept are examined and illustrated. This perspective provides insight into historical scientific views of epilepsy as a mental disease that was thought to be dependent largely on hereditary or developmental factors.
Collapse
Affiliation(s)
- Burkhard S Kasper
- Epilepsy Center, Department of Neurology, University of Erlangen, Schwabachanlage 6, Erlangen 91054, Germany.
| | | | | |
Collapse
|
10
|
Faber-Zuschratter H, Hüttmann K, Steinhäuser C, Becker A, Schramm J, Okafo U, Shanley D, Yilmazer-Hanke DM. Ultrastructural and functional characterization of satellitosis in the human lateral amygdala associated with Ammon's horn sclerosis. Acta Neuropathol 2009; 117:545-55. [PMID: 19247679 DOI: 10.1007/s00401-009-0504-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 11/27/2022]
Abstract
The amygdala displays neuronal cell loss and gliosis in human temporal lobe epilepsy (TLE). Therefore, we investigated a certain type of gliosis, called satellitosis, in the lateral amygdala (LA) of TLE patients with Ammon's horn sclerosis (AHS, n = 15) and non-AHS (n = 12), and in autopsy controls. Satellite cells were quantified using light and electron microscopy at the somata of Nissl-stained and glutamic acid decarboxylase-negative projection neurons, and their functional properties were studied using electrophysiology. Non-AHS cases suffered from ganglioglioma, cortical dysplasia, Sturge-Weber syndrome, astrocytoma WHO III-IV, Rasmussen's encephalitis, cerebral infarction and perinatal brain damage. TLE cases with AHS had a more prominent satellitosis as compared to non-AHS and/or autopsy cases, which correlated with epilepsy duration but not age. At ultrastructural level, the predominant type of satellite cells occurring in both AHS and non-AHS cases displayed a dark cytoplasm and an irregularly shaped dark nucleus, whereas perineuronal glial cells with a light cytoplasm and light oval nucleus were much rarer. Satellite cells expressed time- and voltage-dependent transmembrane currents as revealed by patch-clamp recordings typical for 'complex' glia, although only 44% of satellite cells were immunostained for the chondroitin sulfate proteoglycan NG2. Together, the perineuronal cells described here were a heterogenous cell population regarding their NG2 expression, although they resembled NG2 cells rather than bona fide oligodendrocytes and astrocytes based on their ultrastructural and electrophysiological characteristics. Thus, perineuronal satellitosis as studied in the LA seems to be a hallmark of AHS-associated TLE pathology in patients suffering from intractable epilepsy.
Collapse
|
11
|
The mortality and morbidity of febrile seizures. ACTA ACUST UNITED AC 2009; 4:610-21. [PMID: 18978801 DOI: 10.1038/ncpneuro0922] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 09/04/2008] [Indexed: 11/08/2022]
Abstract
Approaches to the treatment and investigation of febrile seizures have changed since the main reference studies on outcomes were conducted in the 1960s and 1970s. We have, therefore, conducted a systematic review of literature from the past 15 years to see whether outcomes have also changed. We found that simple febrile seizures do not carry a risk of death, but there is a very small risk of death after complex febrile seizures (CFSs), particularly febrile status epilepticus. There is no evidence that SUDEP (sudden unexpected death in epilepsy) occurs in association with febrile seizures. The risk of later epilepsy after a febrile seizure lies between 2.0% and 7.5%, and the risk of developing epilepsy after CFSs is estimated at around 10-20%. There is no evidence of any risk of hippocampal or mesial temporal sclerosis (HS/MTS) in association with simple febrile seizures. Serial imaging has shown that HS/MTS develops in 0-25% of patients over time after prolonged febrile seizures; the range in prevalence reflects selection bias in different studies. The overall risk of HS/MTS associated with CFSs is around 3%. Approximately 40% of patients with medically refractory temporal lobe epilepsy and HS/MTS on neuroimaging have a history of febrile seizures.
Collapse
|
12
|
Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, Sankar R, Donald Shields W, Engel J, Fried I, Cepeda C, Andre VM, Levine MS, Miyata H, Yong WH, Vinters HV, Mathern GW. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 2009; 50:1310-35. [PMID: 19175385 DOI: 10.1111/j.1528-1167.2008.01998.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent findings on the clinical, electroencephalography (EEG), neuroimaging, and surgical outcomes are reviewed comparing patients with Palmini type I (mild) and type II (severe) cortical dysplasia. Resources include peer-reviewed studies on surgically treated patients and a subanalysis of the 2004 International League Against Epilepsy (ILAE) Survey of Pediatric Epilepsy Surgery. These sources were supplemented with data from University of California, Los Angeles (UCLA). Cortical dysplasia is the most frequent histopathologic substrate in children, and the second most common etiology in adult epilepsy surgery patients. Cortical dysplasia patients present with seizures at an earlier age than other surgically treated etiologies, and 33-50% have nonlocalized scalp EEG and normal magnetic resonance imaging (MRI) scans. 2-((18)F)Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is positive in 75-90% of cases. After complete resection, 80% of patients are seizure free compared with 20% with incomplete resections. Compared with type I, patients with type II cortical dysplasia present at younger ages, have higher seizure frequencies, and are extratemporal. Type I dysplasia is found more often in adult patients in the temporal lobe and is often MRI negative. These findings identify characteristics of patients with mild and severe cortical dysplasia that define surgically treated epilepsy syndromes. The authors discuss future challenges to identifying and treating medically refractory epilepsy patients with cortical dysplasia.
Collapse
Affiliation(s)
- Jason T Lerner
- Department of Pediatric Neurology, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav 2008; 12:410-8. [PMID: 18162441 DOI: 10.1016/j.yebeh.2007.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/25/2007] [Accepted: 11/17/2007] [Indexed: 12/27/2022]
Abstract
Memory difficulties are a frequent cognitive complaint of patients with chronic epilepsy. Previous studies have suggested that the presence of a seizure focus causes reorganization of brain mechanisms underlying memory function. Here we examine whether seizure onset in the left hemisphere and onset in the right hemisphere have different effects on memory lateralization and whether longer duration of epilepsy is associated with increased lateralization of memory functions to the unaffected hemisphere. We hypothesized that hemisphere of onset and duration of epilepsy would influence plasticity of memory mechanisms, similar to the plasticity observed for language mechanisms. Healthy controls (HC, N = 10) and patients with epilepsy (N = 23, 11 with a left- and 12 with a right-hemisphere focus) performed a scene-encoding fMRI task at 4 T. Active voxels (relative to scrambled image viewing) were identified for each participant. Memory laterality indices (LIs) were calculated in three regions of interest (ROIs) designed on the basis of HC group data: a functional ROI, an anatomical-hippocampal ROI, and an anatomical-medial temporal ROI encompassing hippocampus and parahippocampal gyrus. In healthy controls, LIs were suggestive of slight left lateralization of encoding memory for pictures. Patients with right hemisphere epilepsy showed a nonsignificant increase in degree of left lateralization. In contrast, patients with left hemispheric epilepsy showed right-lateralized activation, differing significantly from controls and from patients with right hemispheric epilepsy. Neuropsychological measures of memory (WMS-III Story Recall) across epilepsy patients predicted LIs in the anatomical ROIs: higher scores were associated with more left-lateralized medial temporal fMRI activation. Neither age of onset nor duration of epilepsy was significantly related to LI. These results indicate that focal epilepsy may influence the functional neuroanatomy of memory function.
Collapse
|
14
|
|
15
|
Lin JJ, Salamon N, Lee AD, Dutton RA, Geaga JA, Hayashi KM, Luders E, Toga AW, Engel J, Thompson PM. Reduced Neocortical Thickness and Complexity Mapped in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Cereb Cortex 2006; 17:2007-18. [PMID: 17088374 DOI: 10.1093/cercor/bhl109] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We mapped the profile of neocortical thickness and complexity in patients with mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis. Thirty preoperative high-resolution magnetic resonance imaging scans were acquired from 15 right (mean age: 31.9 +/- 9.7 standard deviation [SD] years) and 15 left (mean age: 30.8 +/- 8.4 SD years) MTLE patients who were seizure-free for 2 years after anteriomesial temporal resection. Nineteen healthy controls were also scanned (mean age: 24.8 +/- 3.9 SD years). A cortical pattern matching technique mapped thickness across the entire neocortex. Mesial temporal structures were not included in this analysis. Cortical models were remeshed in frequency space to compute their fractal dimension (surface complexity). Both MTLE groups showed up to 30% bilateral decrease in cortical thickness, in the frontal poles, frontal operculum, orbitofrontal, lateral temporal, and occipital regions. In both groups, cortical complexity was decreased in multiple lobar regions. Significant linkages were found relating longer duration of epilepsy to greater cortical thickness reduction in the superior frontal and parahippocampal gyrus ipsilateral to the side of seizure onset. The pervasive extrahippocampal structural deficits may result from chronic seizure propagation or may reflect other causes such as initial precipitating factors leading to MTLE.
Collapse
Affiliation(s)
- Jack J Lin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kent GP, Schefft BK, Howe SR, Szaflarski JP, Yeh HS, Privitera MD. The effects of duration of intractable epilepsy on memory function. Epilepsy Behav 2006; 9:469-77. [PMID: 16931163 DOI: 10.1016/j.yebeh.2006.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 11/16/2022]
Abstract
We assessed whether duration (time since diagnosis) of intractable epilepsy is associated with progressive memory loss in 250 individuals with left or right temporal lobe epilepsy and those diagnosed with psychogenic nonepileptic seizures. Verbal and nonverbal memory function was assessed using several memory assessment measures administered to all individuals as part of a larger neuropsychological assessment. Multivariate multiple regression analyses demonstrated that duration of temporal lobe epilepsy and age of seizure onset are significantly related to verbal memory deficits in patients with epilepsy. The interaction between duration of epilepsy and diagnostic group was nonsignificant, as was the interaction between age at spell onset and diagnostic group. As measured by several neuropsychological memory tests, duration of disease adversely affects verbal memory performance in patients diagnosed with temporal lobe epilepsy. Our study also supports the notion that age at seizure onset significantly affects verbal memory performance in this population. These results have implications for the strategy of treatment and counseling of patients with intractable temporal lobe epilepsy.
Collapse
Affiliation(s)
- Glenn P Kent
- Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review addresses the main neuropathologic advances that have been made over recent years in the study of focal lesions in patients with epilepsy undergoing surgical treatment. There have been revisions and simplifications to the classification of focal cortical dysplasias. Hippocampal sclerosis is a well-characterized lesion but further pathologic studies have explored its possible relationship to temporal lobe developmental lesions, ongoing neurogenesis and mechanisms of its epileptogenicity. The important contribution of astrocytes to epileptogenesis is also unfolding and is briefly discussed, as are the possible cellular mechanisms of drug resistance.
Collapse
Affiliation(s)
- Maria Thom
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
18
|
Fauser S, Schulze-Bonhage A. Epileptogenicity of cortical dysplasia in temporal lobe dual pathology: an electrophysiological study with invasive recordings. ACTA ACUST UNITED AC 2005; 129:82-95. [PMID: 16317023 DOI: 10.1093/brain/awh687] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hippocampal sclerosis is often associated with macroscopic or microscopic dysplasia in the temporal neocortex (TN). The relevance of such a dual pathology with regard to epileptogenesis is unclear. This study investigates the role of both pathologies in the generation of ictal and interictal activity. Ictal (113 seizures) and interictal data from invasive EEG recordings with simultaneous depth electrodes in the hippocampus and subdural electrodes over the TN were analysed retrospectively in 12 patients with variable degrees of hippocampal sclerosis and different types of histologically confirmed temporal cortical dysplasia [all male, age at epilepsy onset <1-29 years (mean 9.6 years), age when invasive recordings were performed 6-50 years (mean 28.2 years)]. Of the seizures 41.3% arose from the amygdala/hippocampus complex (AHC), 34.7% from the TN, 22% were simultaneously recorded from AHC and TN (indeterminate seizure onset), and 2% from other regions. In three patients, seizure onset was recorded only from the AHC. In patients with severe hippocampal sclerosis only 12% of the seizures arose from the TN, whereas in patients with mild hippocampal sclerosis 58% arose from the TN. The type of cortical dysplasia, however, did not predict seizure onset in the AHC or TN. Propagation time from the TN to the AHC tended to be shorter (mean 7.4 s) than vice versa (mean 13.7 s). The most common initial ictal patterns in the AHC were rhythmic beta activity (<25 Hz) and repetitive sharp waves, and in the TN were fast activity (>25 Hz) and repetitive sharp waves. The interictal patterns over the TN were similar to those seen over extratemporal focal cortical dysplasias. Simultaneous recordings from the hippocampus and the TN strongly suggest that dysplastic tissue in the TN is often epileptogenic. The quantitative contribution of the hippocampus to seizure generation corresponded with the degree of hippocampal pathology, whereas different subtypes of cortical dysplasia did not affect its relative contribution to seizure generation and even mild forms of dysplasia were epileptogenic.
Collapse
Affiliation(s)
- Susanne Fauser
- Epilepsy Center, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
19
|
Briellmann RS, Wellard RM, Jackson GD. Seizure-associated Abnormalities in Epilepsy: Evidence from MR Imaging. Epilepsia 2005; 46:760-6. [PMID: 15857444 DOI: 10.1111/j.1528-1167.2005.47604.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute seizure-associated changes have been described in the animal and human literature. Controversy exists over whether seizures cause permanent damage to the brain, and whether a (prolonged) seizure can induce changes that lead to an epileptic lesion, resulting in habitual seizures and epilepsy. Current magnetic resonance imaging (MRI) offers a variety of imaging tools and is capable of detecting acute seizure-associated changes. In contrast to the histologic examination, serial MRI studies are possible and allow longitudinal observation of the fate of these changes. This report reviews the literature on acute seizure-associated effects emphasizing the MRI evidence.
Collapse
Affiliation(s)
- Regula S Briellmann
- Brain Research Institute, Austin and Repatriation Medical Centre, Victoria, Australia
| | | | | |
Collapse
|